On oblique liquid curtains
In a recent paper (J. Fluid Mech., vol. 861, 2019, pp. 328–348), Benilov derived equations governing a laminar liquid sheet (a curtain) that emanates from a slot whose centreline is inclined to the vertical. The equations are valid for slender sheets whose characteristic length scale in the directio...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-10, Vol.876, Article R3 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a recent paper (J. Fluid Mech., vol. 861, 2019, pp. 328–348), Benilov derived equations governing a laminar liquid sheet (a curtain) that emanates from a slot whose centreline is inclined to the vertical. The equations are valid for slender sheets whose characteristic length scale in the direction of flow is much larger than its cross-sectional thickness. For a liquid that leaves a slot with average speed,
$u_{0}$
, volumetric flow rate per unit width,
$q$
, surface tension,
$\unicode[STIX]{x1D70E}$
, and density,
$\unicode[STIX]{x1D70C}$
, Benilov obtains parametric equations that predict steady-state curtain shapes that bend upwards against gravity provided
$\unicode[STIX]{x1D70C}qu_{0}/2\unicode[STIX]{x1D70E} |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2019.587 |