On oblique liquid curtains

In a recent paper (J. Fluid Mech., vol. 861, 2019, pp. 328–348), Benilov derived equations governing a laminar liquid sheet (a curtain) that emanates from a slot whose centreline is inclined to the vertical. The equations are valid for slender sheets whose characteristic length scale in the directio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-10, Vol.876, Article R3
Hauptverfasser: Weinstein, Steven J., Ross, David S., Ruschak, Kenneth J., Barlow, Nathaniel S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a recent paper (J. Fluid Mech., vol. 861, 2019, pp. 328–348), Benilov derived equations governing a laminar liquid sheet (a curtain) that emanates from a slot whose centreline is inclined to the vertical. The equations are valid for slender sheets whose characteristic length scale in the direction of flow is much larger than its cross-sectional thickness. For a liquid that leaves a slot with average speed, $u_{0}$ , volumetric flow rate per unit width, $q$ , surface tension, $\unicode[STIX]{x1D70E}$ , and density, $\unicode[STIX]{x1D70C}$ , Benilov obtains parametric equations that predict steady-state curtain shapes that bend upwards against gravity provided $\unicode[STIX]{x1D70C}qu_{0}/2\unicode[STIX]{x1D70E}
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2019.587