Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries

Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2019-01, Vol.12 (8), p.2559-2568
Hauptverfasser: Mourad, Eléonore, Petit, Yann K, Spezia, Riccardo, Samojlov, Aleksej, Summa, Francesco F, Prehal, Christian, Leypold, Christian, Mahne, Nika, Slugovc, Christian, Fontaine, Olivier, Brutti, Sergio, Freunberger, Stefan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2568
container_issue 8
container_start_page 2559
container_title Energy & environmental science
container_volume 12
creator Mourad, Eléonore
Petit, Yann K
Spezia, Riccardo
Samojlov, Aleksej
Summa, Francesco F
Prehal, Christian
Leypold, Christian
Mahne, Nika
Slugovc, Christian
Fontaine, Olivier
Brutti, Sergio
Freunberger, Stefan A
description Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation.
doi_str_mv 10.1039/c9ee01453e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2268971088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268971088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-88be4897ca18cd0be111756bd351bfa7de1a721aa3e0eec78090647d27109e493</originalsourceid><addsrcrecordid>eNo1j81KQzEQhYMoWKsbnyDg-mp-7s3PUopaodCFui65ydyS0iZtkkrd-Q6-oU9ipLqaw5yPM2cQuqbklhKu76wGILTtOJygEZVd23SSiNN_LTQ7Rxc5rwgRjEg9QrsXH5ZrKDgePpYQ8JDiBltTfAzYJf9eV3m_hRQP3gF2Pm9T3Mb06x8hExy2MWTY7SFYyHiICZtKFW_xBopZf39-zRnuTSmQPORLdDaYdYarvzlGb48Pr5NpM5s_PU_uZ43lgpdGqR5apaU1VFlHeqC0_iB6xzvaD0Y6oEYyagwHAmClIpqIVjomKdHQaj5GN8fc2qV2y2WxivsU6skFY6ImU6IU_wHIc184</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268971088</pqid></control><display><type>article</type><title>Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mourad, Eléonore ; Petit, Yann K ; Spezia, Riccardo ; Samojlov, Aleksej ; Summa, Francesco F ; Prehal, Christian ; Leypold, Christian ; Mahne, Nika ; Slugovc, Christian ; Fontaine, Olivier ; Brutti, Sergio ; Freunberger, Stefan A</creator><creatorcontrib>Mourad, Eléonore ; Petit, Yann K ; Spezia, Riccardo ; Samojlov, Aleksej ; Summa, Francesco F ; Prehal, Christian ; Leypold, Christian ; Mahne, Nika ; Slugovc, Christian ; Fontaine, Olivier ; Brutti, Sergio ; Freunberger, Stefan A</creatorcontrib><description>Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c9ee01453e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkali metals ; Batteries ; Cations ; Cycles ; Disproportionation ; Lithium ; Metal air batteries ; Metals ; Oxygen ; Peroxide ; Peroxides ; Singlet oxygen ; Superoxide</subject><ispartof>Energy &amp; environmental science, 2019-01, Vol.12 (8), p.2559-2568</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-88be4897ca18cd0be111756bd351bfa7de1a721aa3e0eec78090647d27109e493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mourad, Eléonore</creatorcontrib><creatorcontrib>Petit, Yann K</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><creatorcontrib>Samojlov, Aleksej</creatorcontrib><creatorcontrib>Summa, Francesco F</creatorcontrib><creatorcontrib>Prehal, Christian</creatorcontrib><creatorcontrib>Leypold, Christian</creatorcontrib><creatorcontrib>Mahne, Nika</creatorcontrib><creatorcontrib>Slugovc, Christian</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><creatorcontrib>Brutti, Sergio</creatorcontrib><creatorcontrib>Freunberger, Stefan A</creatorcontrib><title>Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries</title><title>Energy &amp; environmental science</title><description>Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation.</description><subject>Alkali metals</subject><subject>Batteries</subject><subject>Cations</subject><subject>Cycles</subject><subject>Disproportionation</subject><subject>Lithium</subject><subject>Metal air batteries</subject><subject>Metals</subject><subject>Oxygen</subject><subject>Peroxide</subject><subject>Peroxides</subject><subject>Singlet oxygen</subject><subject>Superoxide</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1j81KQzEQhYMoWKsbnyDg-mp-7s3PUopaodCFui65ydyS0iZtkkrd-Q6-oU9ipLqaw5yPM2cQuqbklhKu76wGILTtOJygEZVd23SSiNN_LTQ7Rxc5rwgRjEg9QrsXH5ZrKDgePpYQ8JDiBltTfAzYJf9eV3m_hRQP3gF2Pm9T3Mb06x8hExy2MWTY7SFYyHiICZtKFW_xBopZf39-zRnuTSmQPORLdDaYdYarvzlGb48Pr5NpM5s_PU_uZ43lgpdGqR5apaU1VFlHeqC0_iB6xzvaD0Y6oEYyagwHAmClIpqIVjomKdHQaj5GN8fc2qV2y2WxivsU6skFY6ImU6IU_wHIc184</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mourad, Eléonore</creator><creator>Petit, Yann K</creator><creator>Spezia, Riccardo</creator><creator>Samojlov, Aleksej</creator><creator>Summa, Francesco F</creator><creator>Prehal, Christian</creator><creator>Leypold, Christian</creator><creator>Mahne, Nika</creator><creator>Slugovc, Christian</creator><creator>Fontaine, Olivier</creator><creator>Brutti, Sergio</creator><creator>Freunberger, Stefan A</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190101</creationdate><title>Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries</title><author>Mourad, Eléonore ; Petit, Yann K ; Spezia, Riccardo ; Samojlov, Aleksej ; Summa, Francesco F ; Prehal, Christian ; Leypold, Christian ; Mahne, Nika ; Slugovc, Christian ; Fontaine, Olivier ; Brutti, Sergio ; Freunberger, Stefan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-88be4897ca18cd0be111756bd351bfa7de1a721aa3e0eec78090647d27109e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkali metals</topic><topic>Batteries</topic><topic>Cations</topic><topic>Cycles</topic><topic>Disproportionation</topic><topic>Lithium</topic><topic>Metal air batteries</topic><topic>Metals</topic><topic>Oxygen</topic><topic>Peroxide</topic><topic>Peroxides</topic><topic>Singlet oxygen</topic><topic>Superoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mourad, Eléonore</creatorcontrib><creatorcontrib>Petit, Yann K</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><creatorcontrib>Samojlov, Aleksej</creatorcontrib><creatorcontrib>Summa, Francesco F</creatorcontrib><creatorcontrib>Prehal, Christian</creatorcontrib><creatorcontrib>Leypold, Christian</creatorcontrib><creatorcontrib>Mahne, Nika</creatorcontrib><creatorcontrib>Slugovc, Christian</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><creatorcontrib>Brutti, Sergio</creatorcontrib><creatorcontrib>Freunberger, Stefan A</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mourad, Eléonore</au><au>Petit, Yann K</au><au>Spezia, Riccardo</au><au>Samojlov, Aleksej</au><au>Summa, Francesco F</au><au>Prehal, Christian</au><au>Leypold, Christian</au><au>Mahne, Nika</au><au>Slugovc, Christian</au><au>Fontaine, Olivier</au><au>Brutti, Sergio</au><au>Freunberger, Stefan A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>8</issue><spage>2559</spage><epage>2568</epage><pages>2559-2568</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ee01453e</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2019-01, Vol.12 (8), p.2559-2568
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2268971088
source Royal Society Of Chemistry Journals 2008-
subjects Alkali metals
Batteries
Cations
Cycles
Disproportionation
Lithium
Metal air batteries
Metals
Oxygen
Peroxide
Peroxides
Singlet oxygen
Superoxide
title Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singlet%20oxygen%20from%20cation%20driven%20superoxide%20disproportionation%20and%20consequences%20for%20aprotic%20metal%E2%80%93O2%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Mourad,%20El%C3%A9onore&rft.date=2019-01-01&rft.volume=12&rft.issue=8&rft.spage=2559&rft.epage=2568&rft.pages=2559-2568&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c9ee01453e&rft_dat=%3Cproquest%3E2268971088%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268971088&rft_id=info:pmid/&rfr_iscdi=true