Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries
Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2019-01, Vol.12 (8), p.2559-2568 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2568 |
---|---|
container_issue | 8 |
container_start_page | 2559 |
container_title | Energy & environmental science |
container_volume | 12 |
creator | Mourad, Eléonore Petit, Yann K Spezia, Riccardo Samojlov, Aleksej Summa, Francesco F Prehal, Christian Leypold, Christian Mahne, Nika Slugovc, Christian Fontaine, Olivier Brutti, Sergio Freunberger, Stefan A |
description | Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation. |
doi_str_mv | 10.1039/c9ee01453e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2268971088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268971088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-88be4897ca18cd0be111756bd351bfa7de1a721aa3e0eec78090647d27109e493</originalsourceid><addsrcrecordid>eNo1j81KQzEQhYMoWKsbnyDg-mp-7s3PUopaodCFui65ydyS0iZtkkrd-Q6-oU9ipLqaw5yPM2cQuqbklhKu76wGILTtOJygEZVd23SSiNN_LTQ7Rxc5rwgRjEg9QrsXH5ZrKDgePpYQ8JDiBltTfAzYJf9eV3m_hRQP3gF2Pm9T3Mb06x8hExy2MWTY7SFYyHiICZtKFW_xBopZf39-zRnuTSmQPORLdDaYdYarvzlGb48Pr5NpM5s_PU_uZ43lgpdGqR5apaU1VFlHeqC0_iB6xzvaD0Y6oEYyagwHAmClIpqIVjomKdHQaj5GN8fc2qV2y2WxivsU6skFY6ImU6IU_wHIc184</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268971088</pqid></control><display><type>article</type><title>Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mourad, Eléonore ; Petit, Yann K ; Spezia, Riccardo ; Samojlov, Aleksej ; Summa, Francesco F ; Prehal, Christian ; Leypold, Christian ; Mahne, Nika ; Slugovc, Christian ; Fontaine, Olivier ; Brutti, Sergio ; Freunberger, Stefan A</creator><creatorcontrib>Mourad, Eléonore ; Petit, Yann K ; Spezia, Riccardo ; Samojlov, Aleksej ; Summa, Francesco F ; Prehal, Christian ; Leypold, Christian ; Mahne, Nika ; Slugovc, Christian ; Fontaine, Olivier ; Brutti, Sergio ; Freunberger, Stefan A</creatorcontrib><description>Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c9ee01453e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkali metals ; Batteries ; Cations ; Cycles ; Disproportionation ; Lithium ; Metal air batteries ; Metals ; Oxygen ; Peroxide ; Peroxides ; Singlet oxygen ; Superoxide</subject><ispartof>Energy & environmental science, 2019-01, Vol.12 (8), p.2559-2568</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-88be4897ca18cd0be111756bd351bfa7de1a721aa3e0eec78090647d27109e493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mourad, Eléonore</creatorcontrib><creatorcontrib>Petit, Yann K</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><creatorcontrib>Samojlov, Aleksej</creatorcontrib><creatorcontrib>Summa, Francesco F</creatorcontrib><creatorcontrib>Prehal, Christian</creatorcontrib><creatorcontrib>Leypold, Christian</creatorcontrib><creatorcontrib>Mahne, Nika</creatorcontrib><creatorcontrib>Slugovc, Christian</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><creatorcontrib>Brutti, Sergio</creatorcontrib><creatorcontrib>Freunberger, Stefan A</creatorcontrib><title>Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries</title><title>Energy & environmental science</title><description>Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation.</description><subject>Alkali metals</subject><subject>Batteries</subject><subject>Cations</subject><subject>Cycles</subject><subject>Disproportionation</subject><subject>Lithium</subject><subject>Metal air batteries</subject><subject>Metals</subject><subject>Oxygen</subject><subject>Peroxide</subject><subject>Peroxides</subject><subject>Singlet oxygen</subject><subject>Superoxide</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1j81KQzEQhYMoWKsbnyDg-mp-7s3PUopaodCFui65ydyS0iZtkkrd-Q6-oU9ipLqaw5yPM2cQuqbklhKu76wGILTtOJygEZVd23SSiNN_LTQ7Rxc5rwgRjEg9QrsXH5ZrKDgePpYQ8JDiBltTfAzYJf9eV3m_hRQP3gF2Pm9T3Mb06x8hExy2MWTY7SFYyHiICZtKFW_xBopZf39-zRnuTSmQPORLdDaYdYarvzlGb48Pr5NpM5s_PU_uZ43lgpdGqR5apaU1VFlHeqC0_iB6xzvaD0Y6oEYyagwHAmClIpqIVjomKdHQaj5GN8fc2qV2y2WxivsU6skFY6ImU6IU_wHIc184</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mourad, Eléonore</creator><creator>Petit, Yann K</creator><creator>Spezia, Riccardo</creator><creator>Samojlov, Aleksej</creator><creator>Summa, Francesco F</creator><creator>Prehal, Christian</creator><creator>Leypold, Christian</creator><creator>Mahne, Nika</creator><creator>Slugovc, Christian</creator><creator>Fontaine, Olivier</creator><creator>Brutti, Sergio</creator><creator>Freunberger, Stefan A</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190101</creationdate><title>Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries</title><author>Mourad, Eléonore ; Petit, Yann K ; Spezia, Riccardo ; Samojlov, Aleksej ; Summa, Francesco F ; Prehal, Christian ; Leypold, Christian ; Mahne, Nika ; Slugovc, Christian ; Fontaine, Olivier ; Brutti, Sergio ; Freunberger, Stefan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-88be4897ca18cd0be111756bd351bfa7de1a721aa3e0eec78090647d27109e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkali metals</topic><topic>Batteries</topic><topic>Cations</topic><topic>Cycles</topic><topic>Disproportionation</topic><topic>Lithium</topic><topic>Metal air batteries</topic><topic>Metals</topic><topic>Oxygen</topic><topic>Peroxide</topic><topic>Peroxides</topic><topic>Singlet oxygen</topic><topic>Superoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mourad, Eléonore</creatorcontrib><creatorcontrib>Petit, Yann K</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><creatorcontrib>Samojlov, Aleksej</creatorcontrib><creatorcontrib>Summa, Francesco F</creatorcontrib><creatorcontrib>Prehal, Christian</creatorcontrib><creatorcontrib>Leypold, Christian</creatorcontrib><creatorcontrib>Mahne, Nika</creatorcontrib><creatorcontrib>Slugovc, Christian</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><creatorcontrib>Brutti, Sergio</creatorcontrib><creatorcontrib>Freunberger, Stefan A</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mourad, Eléonore</au><au>Petit, Yann K</au><au>Spezia, Riccardo</au><au>Samojlov, Aleksej</au><au>Summa, Francesco F</au><au>Prehal, Christian</au><au>Leypold, Christian</au><au>Mahne, Nika</au><au>Slugovc, Christian</au><au>Fontaine, Olivier</au><au>Brutti, Sergio</au><au>Freunberger, Stefan A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries</atitle><jtitle>Energy & environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>8</issue><spage>2559</spage><epage>2568</epage><pages>2559-2568</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Aprotic alkali metal–oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K–, Na–, and Li–O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ee01453e</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2019-01, Vol.12 (8), p.2559-2568 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2268971088 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alkali metals Batteries Cations Cycles Disproportionation Lithium Metal air batteries Metals Oxygen Peroxide Peroxides Singlet oxygen Superoxide |
title | Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singlet%20oxygen%20from%20cation%20driven%20superoxide%20disproportionation%20and%20consequences%20for%20aprotic%20metal%E2%80%93O2%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Mourad,%20El%C3%A9onore&rft.date=2019-01-01&rft.volume=12&rft.issue=8&rft.spage=2559&rft.epage=2568&rft.pages=2559-2568&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c9ee01453e&rft_dat=%3Cproquest%3E2268971088%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268971088&rft_id=info:pmid/&rfr_iscdi=true |