A convected-particle tetrahedron interpolation technique in the material-point method for the mesoscale modeling of ceramics

Convected particle domain interpolation, which is known to boost the accuracy of the material-point method, is applied in a form called convected-particle tetrahedron interpolation (CPTI). CPTI exploits the efficiency of tetrahedral tessellations to represent complex structural geometries, while sti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comput. Mech 2019-09, Vol.64 (3), p.563-583
Hauptverfasser: Leavy, R. B., Guilkey, J. E., Phung, B. R., Spear, A. D., Brannon, R. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 583
container_issue 3
container_start_page 563
container_title Comput. Mech
container_volume 64
creator Leavy, R. B.
Guilkey, J. E.
Phung, B. R.
Spear, A. D.
Brannon, R. M.
description Convected particle domain interpolation, which is known to boost the accuracy of the material-point method, is applied in a form called convected-particle tetrahedron interpolation (CPTI). CPTI exploits the efficiency of tetrahedral tessellations to represent complex structural geometries, while still solving field equations on a rectilinear background grid. Advantages include anti-locking and an ability to handle extremely large deformations without suffering typical Eulerian advection errors. CPTI is demonstrated to resolve long-standing errors caused by spuriously ragged (stair-stepped) surfaces, and it is also shown to accommodate mathematically rigorous evaluation of surface integrals in models for contact and friction. Benefits of this work are illustrated in mesoscale simulations of an aluminum oxynitride ceramic.
doi_str_mv 10.1007/s00466-019-01670-x
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_journals_2268934035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595816271</galeid><sourcerecordid>A595816271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-82ea7003e020c54d55cc191cf4ee25d2615c66c2c7735eb6b6c9ac2c37cb7d023</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1podu0f6An0556cDKSLck-LqEfgUCgH2ehHY93FWxpK2nLFvrjO6kLJZcihJjR8w7zzlTVawGXAsBcZYBO6wbEwFcbaM5Pqo3oWtnAILun1QaE6RujjXpevcj5HkCovlWb6te2xhh-EBYam6NLxeNMdaGS3IHGFEPtQ6F0jLMrnqNCeAj--4k4X5cD1Yvjb-_m5hiZrBcqhzjWU0zrL-WY0XHJJY40-7Cv41QjJbd4zC-rZ5ObM736-15U3z68_3r9qbm9-3hzvb1tsBNDaXpJzgC0BBJQdaNSiGIQOHVEUo1SC4Vao0RjWkU7vdM4OA5bgzszgmwvqjdr3ZiLtxn9gwu2Hdi2FUoDz5Chtyt0TJH95WLv4ykF7stKqfuh7aBVTF2u1J5NWR-myJNCPiOxoxho8pzfqkH1QksjWPDukYCZQueyd6ec7c2Xz49ZubKYYs6JJntMfnHppxVgH_Zs1z1b3rP9s2d7ZlG7ijLDYU_pX9__Uf0Gq3ysUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268934035</pqid></control><display><type>article</type><title>A convected-particle tetrahedron interpolation technique in the material-point method for the mesoscale modeling of ceramics</title><source>Springer Nature - Complete Springer Journals</source><creator>Leavy, R. B. ; Guilkey, J. E. ; Phung, B. R. ; Spear, A. D. ; Brannon, R. M.</creator><creatorcontrib>Leavy, R. B. ; Guilkey, J. E. ; Phung, B. R. ; Spear, A. D. ; Brannon, R. M. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Convected particle domain interpolation, which is known to boost the accuracy of the material-point method, is applied in a form called convected-particle tetrahedron interpolation (CPTI). CPTI exploits the efficiency of tetrahedral tessellations to represent complex structural geometries, while still solving field equations on a rectilinear background grid. Advantages include anti-locking and an ability to handle extremely large deformations without suffering typical Eulerian advection errors. CPTI is demonstrated to resolve long-standing errors caused by spuriously ragged (stair-stepped) surfaces, and it is also shown to accommodate mathematically rigorous evaluation of surface integrals in models for contact and friction. Benefits of this work are illustrated in mesoscale simulations of an aluminum oxynitride ceramic.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-019-01670-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Analysis ; Ceramic materials ; Ceramics ; Classical and Continuum Physics ; Computational Science and Engineering ; Computer simulation ; Engineering ; Interpolation ; Locking ; Methods ; Original Paper ; Tetrahedra ; Theoretical and Applied Mechanics</subject><ispartof>Comput. Mech, 2019-09, Vol.64 (3), p.563-583</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Computational Mechanics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-82ea7003e020c54d55cc191cf4ee25d2615c66c2c7735eb6b6c9ac2c37cb7d023</citedby><cites>FETCH-LOGICAL-c419t-82ea7003e020c54d55cc191cf4ee25d2615c66c2c7735eb6b6c9ac2c37cb7d023</cites><orcidid>0000-0002-7243-1198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-019-01670-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-019-01670-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1560100$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leavy, R. B.</creatorcontrib><creatorcontrib>Guilkey, J. E.</creatorcontrib><creatorcontrib>Phung, B. R.</creatorcontrib><creatorcontrib>Spear, A. D.</creatorcontrib><creatorcontrib>Brannon, R. M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>A convected-particle tetrahedron interpolation technique in the material-point method for the mesoscale modeling of ceramics</title><title>Comput. Mech</title><addtitle>Comput Mech</addtitle><description>Convected particle domain interpolation, which is known to boost the accuracy of the material-point method, is applied in a form called convected-particle tetrahedron interpolation (CPTI). CPTI exploits the efficiency of tetrahedral tessellations to represent complex structural geometries, while still solving field equations on a rectilinear background grid. Advantages include anti-locking and an ability to handle extremely large deformations without suffering typical Eulerian advection errors. CPTI is demonstrated to resolve long-standing errors caused by spuriously ragged (stair-stepped) surfaces, and it is also shown to accommodate mathematically rigorous evaluation of surface integrals in models for contact and friction. Benefits of this work are illustrated in mesoscale simulations of an aluminum oxynitride ceramic.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Interpolation</subject><subject>Locking</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Tetrahedra</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhk1podu0f6An0556cDKSLck-LqEfgUCgH2ehHY93FWxpK2nLFvrjO6kLJZcihJjR8w7zzlTVawGXAsBcZYBO6wbEwFcbaM5Pqo3oWtnAILun1QaE6RujjXpevcj5HkCovlWb6te2xhh-EBYam6NLxeNMdaGS3IHGFEPtQ6F0jLMrnqNCeAj--4k4X5cD1Yvjb-_m5hiZrBcqhzjWU0zrL-WY0XHJJY40-7Cv41QjJbd4zC-rZ5ObM736-15U3z68_3r9qbm9-3hzvb1tsBNDaXpJzgC0BBJQdaNSiGIQOHVEUo1SC4Vao0RjWkU7vdM4OA5bgzszgmwvqjdr3ZiLtxn9gwu2Hdi2FUoDz5Chtyt0TJH95WLv4ykF7stKqfuh7aBVTF2u1J5NWR-myJNCPiOxoxho8pzfqkH1QksjWPDukYCZQueyd6ec7c2Xz49ZubKYYs6JJntMfnHppxVgH_Zs1z1b3rP9s2d7ZlG7ijLDYU_pX9__Uf0Gq3ysUA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Leavy, R. B.</creator><creator>Guilkey, J. E.</creator><creator>Phung, B. R.</creator><creator>Spear, A. D.</creator><creator>Brannon, R. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7243-1198</orcidid></search><sort><creationdate>20190901</creationdate><title>A convected-particle tetrahedron interpolation technique in the material-point method for the mesoscale modeling of ceramics</title><author>Leavy, R. B. ; Guilkey, J. E. ; Phung, B. R. ; Spear, A. D. ; Brannon, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-82ea7003e020c54d55cc191cf4ee25d2615c66c2c7735eb6b6c9ac2c37cb7d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Interpolation</topic><topic>Locking</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Tetrahedra</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leavy, R. B.</creatorcontrib><creatorcontrib>Guilkey, J. E.</creatorcontrib><creatorcontrib>Phung, B. R.</creatorcontrib><creatorcontrib>Spear, A. D.</creatorcontrib><creatorcontrib>Brannon, R. M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>OSTI.GOV</collection><jtitle>Comput. Mech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leavy, R. B.</au><au>Guilkey, J. E.</au><au>Phung, B. R.</au><au>Spear, A. D.</au><au>Brannon, R. M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A convected-particle tetrahedron interpolation technique in the material-point method for the mesoscale modeling of ceramics</atitle><jtitle>Comput. Mech</jtitle><stitle>Comput Mech</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>64</volume><issue>3</issue><spage>563</spage><epage>583</epage><pages>563-583</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Convected particle domain interpolation, which is known to boost the accuracy of the material-point method, is applied in a form called convected-particle tetrahedron interpolation (CPTI). CPTI exploits the efficiency of tetrahedral tessellations to represent complex structural geometries, while still solving field equations on a rectilinear background grid. Advantages include anti-locking and an ability to handle extremely large deformations without suffering typical Eulerian advection errors. CPTI is demonstrated to resolve long-standing errors caused by spuriously ragged (stair-stepped) surfaces, and it is also shown to accommodate mathematically rigorous evaluation of surface integrals in models for contact and friction. Benefits of this work are illustrated in mesoscale simulations of an aluminum oxynitride ceramic.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-019-01670-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7243-1198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Comput. Mech, 2019-09, Vol.64 (3), p.563-583
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2268934035
source Springer Nature - Complete Springer Journals
subjects Aluminum
Analysis
Ceramic materials
Ceramics
Classical and Continuum Physics
Computational Science and Engineering
Computer simulation
Engineering
Interpolation
Locking
Methods
Original Paper
Tetrahedra
Theoretical and Applied Mechanics
title A convected-particle tetrahedron interpolation technique in the material-point method for the mesoscale modeling of ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20convected-particle%20tetrahedron%20interpolation%20technique%20in%20the%20material-point%20method%20for%20the%20mesoscale%20modeling%20of%20ceramics&rft.jtitle=Comput.%20Mech&rft.au=Leavy,%20R.%20B.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-09-01&rft.volume=64&rft.issue=3&rft.spage=563&rft.epage=583&rft.pages=563-583&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-019-01670-x&rft_dat=%3Cgale_osti_%3EA595816271%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268934035&rft_id=info:pmid/&rft_galeid=A595816271&rfr_iscdi=true