Minimal linear codes from characteristic functions

Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \(\mathbb{F}_q\) to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
Hauptverfasser: Mesnager, Sihem, Qi, Yanfeng, Ru, Hongming, Tang, Chunming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mesnager, Sihem
Qi, Yanfeng
Ru, Hongming
Tang, Chunming
description Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \(\mathbb{F}_q\) to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of \(\mathbb{F}_q\), we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2268891132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268891132</sourcerecordid><originalsourceid>FETCH-proquest_journals_22688911323</originalsourceid><addsrcrecordid>eNqNyrEOwiAUQFFiYmKj_QcS5ybwaCvORuPi5t4QhEhDQd-D_9fBD3C6w7kr1oBSstM9wIa1RLMQAsYDDINqGNxCCouJPIbkDHKbH464x7xw-zRobHEYqATLfU22hJxox9beRHLtr1u2v5zvp2v3wvyujso054rpSxPAqPVRSgXqv-sDDQ00UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268891132</pqid></control><display><type>article</type><title>Minimal linear codes from characteristic functions</title><source>Free E- Journals</source><creator>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</creator><creatorcontrib>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</creatorcontrib><description>Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \(\mathbb{F}_q\) to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of \(\mathbb{F}_q\), we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binary codes ; Characteristic functions ; Codes ; Linear codes ; Subspaces</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mesnager, Sihem</creatorcontrib><creatorcontrib>Qi, Yanfeng</creatorcontrib><creatorcontrib>Ru, Hongming</creatorcontrib><creatorcontrib>Tang, Chunming</creatorcontrib><title>Minimal linear codes from characteristic functions</title><title>arXiv.org</title><description>Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \(\mathbb{F}_q\) to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of \(\mathbb{F}_q\), we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.</description><subject>Binary codes</subject><subject>Characteristic functions</subject><subject>Codes</subject><subject>Linear codes</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOwiAUQFFiYmKj_QcS5ybwaCvORuPi5t4QhEhDQd-D_9fBD3C6w7kr1oBSstM9wIa1RLMQAsYDDINqGNxCCouJPIbkDHKbH464x7xw-zRobHEYqATLfU22hJxox9beRHLtr1u2v5zvp2v3wvyujso054rpSxPAqPVRSgXqv-sDDQ00UQ</recordid><startdate>20191120</startdate><enddate>20191120</enddate><creator>Mesnager, Sihem</creator><creator>Qi, Yanfeng</creator><creator>Ru, Hongming</creator><creator>Tang, Chunming</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191120</creationdate><title>Minimal linear codes from characteristic functions</title><author>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22688911323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binary codes</topic><topic>Characteristic functions</topic><topic>Codes</topic><topic>Linear codes</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Mesnager, Sihem</creatorcontrib><creatorcontrib>Qi, Yanfeng</creatorcontrib><creatorcontrib>Ru, Hongming</creatorcontrib><creatorcontrib>Tang, Chunming</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesnager, Sihem</au><au>Qi, Yanfeng</au><au>Ru, Hongming</au><au>Tang, Chunming</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Minimal linear codes from characteristic functions</atitle><jtitle>arXiv.org</jtitle><date>2019-11-20</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \(\mathbb{F}_q\) to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of \(\mathbb{F}_q\), we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2268891132
source Free E- Journals
subjects Binary codes
Characteristic functions
Codes
Linear codes
Subspaces
title Minimal linear codes from characteristic functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Minimal%20linear%20codes%20from%20characteristic%20functions&rft.jtitle=arXiv.org&rft.au=Mesnager,%20Sihem&rft.date=2019-11-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2268891132%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268891132&rft_id=info:pmid/&rfr_iscdi=true