Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study

AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2019-10, Vol.145 (10)
Hauptverfasser: Mangalathu, Sujith, Jeon, Jong-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of structural engineering (New York, N.Y.)
container_volume 145
creator Mangalathu, Sujith
Jeon, Jong-Su
description AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of machine learning methods. Three types of failure mode such as flexure, flexure-shear, and shear are considered in this study, and 311 specimens are compiled from experimental studies on the circular columns. The efficiency of various machine learning models such as quadratic discriminant analysis, K-nearest neighbors, decision trees, random forests, naïve Bayes, and artificial neural network is evaluated using a randomly assigned test set from the collected data. It is noted that artificial neural network has superior performance amongst all the machine-learning methods, and the comparison of this classification with the existing methods underscores the advantage of the artificial neural network in failure mode recognition. Classification based on artificial neural network is 91% accurate in identifying the failure mode of the collected experimental data.
doi_str_mv 10.1061/(ASCE)ST.1943-541X.0002402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268711551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268711551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-674658f587e1aa23fd4907b9d34d82f811e18fa6a67648bd36a1377f6e63ff8c3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWH_eYdCNLqYmk0ySdtcO9QdaBFvBXUhnbmpKm9RkRnDnO_iGPolT6s_K1b33cM658CF0RnCXYE6uLgbTYnQ5nXVJj9E0Z-SpizHOGM72UOdX20cdLChNe4zlh-goxmVrEjmRHRQnuny2DpIx6OCsW3y-fwx1hCq51nbVBEgmvoLkAUq_cLa23iXeJIUNZbPSodWtMz6Urb_wrgxQQzIMtlpAe6-atYv9dllvdNC1fYVkWjfV2wk6MHoV4fR7HqPH69GsuE3H9zd3xWCcapaROuWC8VyaXAogWmfUVKyHxbxXUVbJzEhCgEijueaCMzmvKNeECmE4cGqMLOkxOt_1boJ_aSDWaumb4NqXKsu4FITkOWld_Z2rDD7GAEZtgl3r8KYIVlvISm0hq-lMbYGqLVD1DbkN811YxxL-6n-S_we_AOC1gsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268711551</pqid></control><display><type>article</type><title>Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Mangalathu, Sujith ; Jeon, Jong-Su</creator><creatorcontrib>Mangalathu, Sujith ; Jeon, Jong-Su</creatorcontrib><description>AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of machine learning methods. Three types of failure mode such as flexure, flexure-shear, and shear are considered in this study, and 311 specimens are compiled from experimental studies on the circular columns. The efficiency of various machine learning models such as quadratic discriminant analysis, K-nearest neighbors, decision trees, random forests, naïve Bayes, and artificial neural network is evaluated using a randomly assigned test set from the collected data. It is noted that artificial neural network has superior performance amongst all the machine-learning methods, and the comparison of this classification with the existing methods underscores the advantage of the artificial neural network in failure mode recognition. Classification based on artificial neural network is 91% accurate in identifying the failure mode of the collected experimental data.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0002402</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Artificial intelligence ; Artificial neural networks ; Bridge failure ; Circularity ; Classification ; Columns (structural) ; Comparative studies ; Concrete bridges ; Decision analysis ; Decision trees ; Discriminant analysis ; Failure modes ; Flexing ; Machine learning ; Neural networks ; Recognition ; Reinforced concrete ; Seismic activity ; Structural engineering ; Technical Papers</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2019-10, Vol.145 (10)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a421t-674658f587e1aa23fd4907b9d34d82f811e18fa6a67648bd36a1377f6e63ff8c3</citedby><cites>FETCH-LOGICAL-a421t-674658f587e1aa23fd4907b9d34d82f811e18fa6a67648bd36a1377f6e63ff8c3</cites><orcidid>0000-0001-6657-7265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0002402$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0002402$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76162,76170</link.rule.ids></links><search><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><title>Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of machine learning methods. Three types of failure mode such as flexure, flexure-shear, and shear are considered in this study, and 311 specimens are compiled from experimental studies on the circular columns. The efficiency of various machine learning models such as quadratic discriminant analysis, K-nearest neighbors, decision trees, random forests, naïve Bayes, and artificial neural network is evaluated using a randomly assigned test set from the collected data. It is noted that artificial neural network has superior performance amongst all the machine-learning methods, and the comparison of this classification with the existing methods underscores the advantage of the artificial neural network in failure mode recognition. Classification based on artificial neural network is 91% accurate in identifying the failure mode of the collected experimental data.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bridge failure</subject><subject>Circularity</subject><subject>Classification</subject><subject>Columns (structural)</subject><subject>Comparative studies</subject><subject>Concrete bridges</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Failure modes</subject><subject>Flexing</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Reinforced concrete</subject><subject>Seismic activity</subject><subject>Structural engineering</subject><subject>Technical Papers</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWH_eYdCNLqYmk0ySdtcO9QdaBFvBXUhnbmpKm9RkRnDnO_iGPolT6s_K1b33cM658CF0RnCXYE6uLgbTYnQ5nXVJj9E0Z-SpizHOGM72UOdX20cdLChNe4zlh-goxmVrEjmRHRQnuny2DpIx6OCsW3y-fwx1hCq51nbVBEgmvoLkAUq_cLa23iXeJIUNZbPSodWtMz6Urb_wrgxQQzIMtlpAe6-atYv9dllvdNC1fYVkWjfV2wk6MHoV4fR7HqPH69GsuE3H9zd3xWCcapaROuWC8VyaXAogWmfUVKyHxbxXUVbJzEhCgEijueaCMzmvKNeECmE4cGqMLOkxOt_1boJ_aSDWaumb4NqXKsu4FITkOWld_Z2rDD7GAEZtgl3r8KYIVlvISm0hq-lMbYGqLVD1DbkN811YxxL-6n-S_we_AOC1gsU</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Mangalathu, Sujith</creator><creator>Jeon, Jong-Su</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6657-7265</orcidid></search><sort><creationdate>20191001</creationdate><title>Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study</title><author>Mangalathu, Sujith ; Jeon, Jong-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-674658f587e1aa23fd4907b9d34d82f811e18fa6a67648bd36a1377f6e63ff8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bridge failure</topic><topic>Circularity</topic><topic>Classification</topic><topic>Columns (structural)</topic><topic>Comparative studies</topic><topic>Concrete bridges</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Failure modes</topic><topic>Flexing</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Reinforced concrete</topic><topic>Seismic activity</topic><topic>Structural engineering</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangalathu, Sujith</au><au>Jeon, Jong-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>145</volume><issue>10</issue><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of machine learning methods. Three types of failure mode such as flexure, flexure-shear, and shear are considered in this study, and 311 specimens are compiled from experimental studies on the circular columns. The efficiency of various machine learning models such as quadratic discriminant analysis, K-nearest neighbors, decision trees, random forests, naïve Bayes, and artificial neural network is evaluated using a randomly assigned test set from the collected data. It is noted that artificial neural network has superior performance amongst all the machine-learning methods, and the comparison of this classification with the existing methods underscores the advantage of the artificial neural network in failure mode recognition. Classification based on artificial neural network is 91% accurate in identifying the failure mode of the collected experimental data.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0002402</doi><orcidid>https://orcid.org/0000-0001-6657-7265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-9445
ispartof Journal of structural engineering (New York, N.Y.), 2019-10, Vol.145 (10)
issn 0733-9445
1943-541X
language eng
recordid cdi_proquest_journals_2268711551
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Artificial intelligence
Artificial neural networks
Bridge failure
Circularity
Classification
Columns (structural)
Comparative studies
Concrete bridges
Decision analysis
Decision trees
Discriminant analysis
Failure modes
Flexing
Machine learning
Neural networks
Recognition
Reinforced concrete
Seismic activity
Structural engineering
Technical Papers
title Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%E2%80%93Based%20Failure%20Mode%20Recognition%20of%20Circular%20Reinforced%20Concrete%20Bridge%20Columns:%20Comparative%20Study&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Mangalathu,%20Sujith&rft.date=2019-10-01&rft.volume=145&rft.issue=10&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0002402&rft_dat=%3Cproquest_cross%3E2268711551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268711551&rft_id=info:pmid/&rfr_iscdi=true