Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study
AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of...
Gespeichert in:
Veröffentlicht in: | Journal of structural engineering (New York, N.Y.) N.Y.), 2019-10, Vol.145 (10) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of structural engineering (New York, N.Y.) |
container_volume | 145 |
creator | Mangalathu, Sujith Jeon, Jong-Su |
description | AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of machine learning methods. Three types of failure mode such as flexure, flexure-shear, and shear are considered in this study, and 311 specimens are compiled from experimental studies on the circular columns. The efficiency of various machine learning models such as quadratic discriminant analysis, K-nearest neighbors, decision trees, random forests, naïve Bayes, and artificial neural network is evaluated using a randomly assigned test set from the collected data. It is noted that artificial neural network has superior performance amongst all the machine-learning methods, and the comparison of this classification with the existing methods underscores the advantage of the artificial neural network in failure mode recognition. Classification based on artificial neural network is 91% accurate in identifying the failure mode of the collected experimental data. |
doi_str_mv | 10.1061/(ASCE)ST.1943-541X.0002402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268711551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268711551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-674658f587e1aa23fd4907b9d34d82f811e18fa6a67648bd36a1377f6e63ff8c3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWH_eYdCNLqYmk0ySdtcO9QdaBFvBXUhnbmpKm9RkRnDnO_iGPolT6s_K1b33cM658CF0RnCXYE6uLgbTYnQ5nXVJj9E0Z-SpizHOGM72UOdX20cdLChNe4zlh-goxmVrEjmRHRQnuny2DpIx6OCsW3y-fwx1hCq51nbVBEgmvoLkAUq_cLa23iXeJIUNZbPSodWtMz6Urb_wrgxQQzIMtlpAe6-atYv9dllvdNC1fYVkWjfV2wk6MHoV4fR7HqPH69GsuE3H9zd3xWCcapaROuWC8VyaXAogWmfUVKyHxbxXUVbJzEhCgEijueaCMzmvKNeECmE4cGqMLOkxOt_1boJ_aSDWaumb4NqXKsu4FITkOWld_Z2rDD7GAEZtgl3r8KYIVlvISm0hq-lMbYGqLVD1DbkN811YxxL-6n-S_we_AOC1gsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268711551</pqid></control><display><type>article</type><title>Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Mangalathu, Sujith ; Jeon, Jong-Su</creator><creatorcontrib>Mangalathu, Sujith ; Jeon, Jong-Su</creatorcontrib><description>AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of machine learning methods. Three types of failure mode such as flexure, flexure-shear, and shear are considered in this study, and 311 specimens are compiled from experimental studies on the circular columns. The efficiency of various machine learning models such as quadratic discriminant analysis, K-nearest neighbors, decision trees, random forests, naïve Bayes, and artificial neural network is evaluated using a randomly assigned test set from the collected data. It is noted that artificial neural network has superior performance amongst all the machine-learning methods, and the comparison of this classification with the existing methods underscores the advantage of the artificial neural network in failure mode recognition. Classification based on artificial neural network is 91% accurate in identifying the failure mode of the collected experimental data.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0002402</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Artificial intelligence ; Artificial neural networks ; Bridge failure ; Circularity ; Classification ; Columns (structural) ; Comparative studies ; Concrete bridges ; Decision analysis ; Decision trees ; Discriminant analysis ; Failure modes ; Flexing ; Machine learning ; Neural networks ; Recognition ; Reinforced concrete ; Seismic activity ; Structural engineering ; Technical Papers</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2019-10, Vol.145 (10)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a421t-674658f587e1aa23fd4907b9d34d82f811e18fa6a67648bd36a1377f6e63ff8c3</citedby><cites>FETCH-LOGICAL-a421t-674658f587e1aa23fd4907b9d34d82f811e18fa6a67648bd36a1377f6e63ff8c3</cites><orcidid>0000-0001-6657-7265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0002402$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0002402$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76162,76170</link.rule.ids></links><search><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><title>Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of machine learning methods. Three types of failure mode such as flexure, flexure-shear, and shear are considered in this study, and 311 specimens are compiled from experimental studies on the circular columns. The efficiency of various machine learning models such as quadratic discriminant analysis, K-nearest neighbors, decision trees, random forests, naïve Bayes, and artificial neural network is evaluated using a randomly assigned test set from the collected data. It is noted that artificial neural network has superior performance amongst all the machine-learning methods, and the comparison of this classification with the existing methods underscores the advantage of the artificial neural network in failure mode recognition. Classification based on artificial neural network is 91% accurate in identifying the failure mode of the collected experimental data.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bridge failure</subject><subject>Circularity</subject><subject>Classification</subject><subject>Columns (structural)</subject><subject>Comparative studies</subject><subject>Concrete bridges</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Failure modes</subject><subject>Flexing</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Reinforced concrete</subject><subject>Seismic activity</subject><subject>Structural engineering</subject><subject>Technical Papers</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWH_eYdCNLqYmk0ySdtcO9QdaBFvBXUhnbmpKm9RkRnDnO_iGPolT6s_K1b33cM658CF0RnCXYE6uLgbTYnQ5nXVJj9E0Z-SpizHOGM72UOdX20cdLChNe4zlh-goxmVrEjmRHRQnuny2DpIx6OCsW3y-fwx1hCq51nbVBEgmvoLkAUq_cLa23iXeJIUNZbPSodWtMz6Urb_wrgxQQzIMtlpAe6-atYv9dllvdNC1fYVkWjfV2wk6MHoV4fR7HqPH69GsuE3H9zd3xWCcapaROuWC8VyaXAogWmfUVKyHxbxXUVbJzEhCgEijueaCMzmvKNeECmE4cGqMLOkxOt_1boJ_aSDWaumb4NqXKsu4FITkOWld_Z2rDD7GAEZtgl3r8KYIVlvISm0hq-lMbYGqLVD1DbkN811YxxL-6n-S_we_AOC1gsU</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Mangalathu, Sujith</creator><creator>Jeon, Jong-Su</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-6657-7265</orcidid></search><sort><creationdate>20191001</creationdate><title>Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study</title><author>Mangalathu, Sujith ; Jeon, Jong-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-674658f587e1aa23fd4907b9d34d82f811e18fa6a67648bd36a1377f6e63ff8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bridge failure</topic><topic>Circularity</topic><topic>Classification</topic><topic>Columns (structural)</topic><topic>Comparative studies</topic><topic>Concrete bridges</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Failure modes</topic><topic>Flexing</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Reinforced concrete</topic><topic>Seismic activity</topic><topic>Structural engineering</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangalathu, Sujith</au><au>Jeon, Jong-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>145</volume><issue>10</issue><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractThe prediction of failure mode of columns is critical in deciding the operational and recovery strategies of a bridge after a seismic event. This paper contributes to the critical need of failure mode prediction for circular reinforced concrete bridge columns by exploring the capabilities of machine learning methods. Three types of failure mode such as flexure, flexure-shear, and shear are considered in this study, and 311 specimens are compiled from experimental studies on the circular columns. The efficiency of various machine learning models such as quadratic discriminant analysis, K-nearest neighbors, decision trees, random forests, naïve Bayes, and artificial neural network is evaluated using a randomly assigned test set from the collected data. It is noted that artificial neural network has superior performance amongst all the machine-learning methods, and the comparison of this classification with the existing methods underscores the advantage of the artificial neural network in failure mode recognition. Classification based on artificial neural network is 91% accurate in identifying the failure mode of the collected experimental data.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0002402</doi><orcidid>https://orcid.org/0000-0001-6657-7265</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9445 |
ispartof | Journal of structural engineering (New York, N.Y.), 2019-10, Vol.145 (10) |
issn | 0733-9445 1943-541X |
language | eng |
recordid | cdi_proquest_journals_2268711551 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Artificial intelligence Artificial neural networks Bridge failure Circularity Classification Columns (structural) Comparative studies Concrete bridges Decision analysis Decision trees Discriminant analysis Failure modes Flexing Machine learning Neural networks Recognition Reinforced concrete Seismic activity Structural engineering Technical Papers |
title | Machine Learning–Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns: Comparative Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%E2%80%93Based%20Failure%20Mode%20Recognition%20of%20Circular%20Reinforced%20Concrete%20Bridge%20Columns:%20Comparative%20Study&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Mangalathu,%20Sujith&rft.date=2019-10-01&rft.volume=145&rft.issue=10&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0002402&rft_dat=%3Cproquest_cross%3E2268711551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268711551&rft_id=info:pmid/&rfr_iscdi=true |