Patterns of genetic diversity in Great Lakes bloaters (Coregonus hoyi) with a view to future reintroduction in Lake Ontario

The originally diverse ciscoe fish fauna of the Laurentian Great Lakes has suffered many extinctions and local extirpations. Bloaters (Coregonus hoyi) are presumed extirpated from Lake Ontario and the reintroduction of this deepwater fish is under consideration. Given the demographic fluctuations of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation genetics 2008-04, Vol.9 (2), p.281-293
Hauptverfasser: Favé, Marie-Julie, Turgeon, Julie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The originally diverse ciscoe fish fauna of the Laurentian Great Lakes has suffered many extinctions and local extirpations. Bloaters (Coregonus hoyi) are presumed extirpated from Lake Ontario and the reintroduction of this deepwater fish is under consideration. Given the demographic fluctuations of this species in the other Great Lakes and its recent intralacustrine origin, we sought to identify a genetically diverse and similar source of C. hoyi via an analysis of genetic diversity and population structure using 10 microsatellite loci. Despite well-documented demographic declines, we found no genetic evidence of bottlenecks in 12 C. hoyi samples from the four potential donor lakes (Huron, Michigan, Superior and Nipigon). By contrast, evidence of bottlenecks in historical samples of C. artedi from Lake Ontario suggested that standard genetic methods frequently used to identify population bottlenecks can only detect very severe and long-lasting demographic declines in naturally large populations. Patterns of genetic differentiation and assignment tests indicated that C. hoyi from Lake Huron and Lake Michigan, which are not differentiated, are genetically most similar to Lake Ontario ciscoes. The small available sample of deepwater ciscoes recently caught in Lake Ontario did not allow determining if these represent a small undetected C. hoyi population or a recent invasion of the deep section by C. artedi. On the basis of genetic criteria, we conclude that C. hoyi from any location within Lake Huron or Lake Michigan would be judicious sources of breeders for reintroducing C. hoyi in Lake Ontario.
ISSN:1566-0621
1572-9737
DOI:10.1007/s10592-007-9339-6