Modeling PKT at a global level: A machine learning approach

It is well-accepted that the ability to go from one place to another, or mobility, contributes significantly to one's wellbeing. The need for mobility is universal, but the demand for mobility shows a great variation on a country basis. This particular study looks at what are some of the most i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Mitra, Peetak, Deshmukh, Suhrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mitra, Peetak
Deshmukh, Suhrid
description It is well-accepted that the ability to go from one place to another, or mobility, contributes significantly to one's wellbeing. The need for mobility is universal, but the demand for mobility shows a great variation on a country basis. This particular study looks at what are some of the most important factors on a global level that can help in predicting the passengerkilometers-travelled or passenger-miles-travelled (PKT/PMT) on a country by country basis. This particular work tries to quantify the impact of some of the key variables like Gross Domestic Product (GDP), population growth, employment rate, number of households, age demographics within the population and macroeconomic variables on the total vehicle-based travel within each country. A panel-based regression model is developed to identify the effect of some of the key macroeconomic variables on the countries' PKT growth.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2268453998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268453998</sourcerecordid><originalsourceid>FETCH-proquest_journals_22684539983</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9s1PSc3JzEtXCPAOUUgsUUhUSM_JT0rMUchJLUvNsVJwVMhNTM7IzEsFCiQW5YFUJhYUFOUDBXkYWNMSc4pTeaE0N4Oym2uIs4cuULqwNLW4JD4rv7QoDygVb2RkZmFiamxpaWFMnCoAXmU2Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268453998</pqid></control><display><type>article</type><title>Modeling PKT at a global level: A machine learning approach</title><source>Free E- Journals</source><creator>Mitra, Peetak ; Deshmukh, Suhrid</creator><creatorcontrib>Mitra, Peetak ; Deshmukh, Suhrid</creatorcontrib><description>It is well-accepted that the ability to go from one place to another, or mobility, contributes significantly to one's wellbeing. The need for mobility is universal, but the demand for mobility shows a great variation on a country basis. This particular study looks at what are some of the most important factors on a global level that can help in predicting the passengerkilometers-travelled or passenger-miles-travelled (PKT/PMT) on a country by country basis. This particular work tries to quantify the impact of some of the key variables like Gross Domestic Product (GDP), population growth, employment rate, number of households, age demographics within the population and macroeconomic variables on the total vehicle-based travel within each country. A panel-based regression model is developed to identify the effect of some of the key macroeconomic variables on the countries' PKT growth.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Demographic variables ; Demographics ; Households ; Machine learning ; Macroeconomics ; Population growth ; Regression models</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mitra, Peetak</creatorcontrib><creatorcontrib>Deshmukh, Suhrid</creatorcontrib><title>Modeling PKT at a global level: A machine learning approach</title><title>arXiv.org</title><description>It is well-accepted that the ability to go from one place to another, or mobility, contributes significantly to one's wellbeing. The need for mobility is universal, but the demand for mobility shows a great variation on a country basis. This particular study looks at what are some of the most important factors on a global level that can help in predicting the passengerkilometers-travelled or passenger-miles-travelled (PKT/PMT) on a country by country basis. This particular work tries to quantify the impact of some of the key variables like Gross Domestic Product (GDP), population growth, employment rate, number of households, age demographics within the population and macroeconomic variables on the total vehicle-based travel within each country. A panel-based regression model is developed to identify the effect of some of the key macroeconomic variables on the countries' PKT growth.</description><subject>Demographic variables</subject><subject>Demographics</subject><subject>Households</subject><subject>Machine learning</subject><subject>Macroeconomics</subject><subject>Population growth</subject><subject>Regression models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9s1PSc3JzEtXCPAOUUgsUUhUSM_JT0rMUchJLUvNsVJwVMhNTM7IzEsFCiQW5YFUJhYUFOUDBXkYWNMSc4pTeaE0N4Oym2uIs4cuULqwNLW4JD4rv7QoDygVb2RkZmFiamxpaWFMnCoAXmU2Gw</recordid><startdate>20190721</startdate><enddate>20190721</enddate><creator>Mitra, Peetak</creator><creator>Deshmukh, Suhrid</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190721</creationdate><title>Modeling PKT at a global level: A machine learning approach</title><author>Mitra, Peetak ; Deshmukh, Suhrid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22684539983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Demographic variables</topic><topic>Demographics</topic><topic>Households</topic><topic>Machine learning</topic><topic>Macroeconomics</topic><topic>Population growth</topic><topic>Regression models</topic><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Peetak</creatorcontrib><creatorcontrib>Deshmukh, Suhrid</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Peetak</au><au>Deshmukh, Suhrid</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modeling PKT at a global level: A machine learning approach</atitle><jtitle>arXiv.org</jtitle><date>2019-07-21</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>It is well-accepted that the ability to go from one place to another, or mobility, contributes significantly to one's wellbeing. The need for mobility is universal, but the demand for mobility shows a great variation on a country basis. This particular study looks at what are some of the most important factors on a global level that can help in predicting the passengerkilometers-travelled or passenger-miles-travelled (PKT/PMT) on a country by country basis. This particular work tries to quantify the impact of some of the key variables like Gross Domestic Product (GDP), population growth, employment rate, number of households, age demographics within the population and macroeconomic variables on the total vehicle-based travel within each country. A panel-based regression model is developed to identify the effect of some of the key macroeconomic variables on the countries' PKT growth.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2268453998
source Free E- Journals
subjects Demographic variables
Demographics
Households
Machine learning
Macroeconomics
Population growth
Regression models
title Modeling PKT at a global level: A machine learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modeling%20PKT%20at%20a%20global%20level:%20A%20machine%20learning%20approach&rft.jtitle=arXiv.org&rft.au=Mitra,%20Peetak&rft.date=2019-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2268453998%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268453998&rft_id=info:pmid/&rfr_iscdi=true