Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning
Agriculture is the most important sector in the Indian economy and contributes 18% of Gross Domestic Product (GDP). India is the second largest producer of sugarcane crop and produces about 20% of the world's sugarcane. In this paper, a novel approach to sugarcane yield forecasting in Karnataka...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems and applications 2019-08, Vol.11 (8), p.11-20 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 8 |
container_start_page | 11 |
container_title | International journal of intelligent systems and applications |
container_volume | 11 |
creator | Medar, Ramesh A. Rajpurohit, Vijay S. Ambekar, Anand M. |
description | Agriculture is the most important sector in the Indian economy and contributes 18% of Gross Domestic Product (GDP). India is the second largest producer of sugarcane crop and produces about 20% of the world's sugarcane. In this paper, a novel approach to sugarcane yield forecasting in Karnataka(India) region using Long-Term-Time-Series (LTTS), Weather-and-soil attributes, Normalized Vegetation Index(NDVI) and Supervised machine learning(SML) algorithms have been proposed. Sugarcane Cultivation Life Cycle (SCLC) in Karnataka(India) region is about 12 months, with plantation beginning at three different seasons. Our approach divides yield forecasting into three stages, i)soil-and-weather attributes are predicted for the duration of SCLC, ii)NDVI is predicted using Support Vector Machine Regression (SVR) algorithm by considering soil-and-weather attributes as input, iii)sugarcane crop is predicted using SVR by considering NDVI as input. Our approach has been verified using historical dataset and results have shown that our approach has successfully modeled soil and weather attributes prediction as 24 steps LTTS with accuracy of 85.24% for Soil Temperature given by Lasso algorithm, 85.372% accuracy for Temperature given by Naive-Bayes algorithm, accuracy for Soil Moisture is 77.46% given by Naive-Bayes, NDVI prediction with accuracy of 89.97% given by SVR-RBF, crop prediction with accuracy of 83.49% given by SVR-RBF. |
doi_str_mv | 10.5815/ijisa.2019.08.02 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268345561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268345561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1582-1e5867c467f4a71f55c27b632451abf47f0152055aa2ba8b643faafb99be3e653</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOObuHgueW5M0L02PMpwbbHiYAz2F1yyZKbWtySr439s58V3eB-_73gc_Qm4ZzUAxuPe1j5hxysqMqozyCzLhtBBpSUFd_mvxek1mMdZ0HKmEYuWELLfDAYPB1ibz0PXJm7fNPll0wRqMR98ekk23t02yiye9HXobvny0-2SD5t2PqbXF0I63G3LlsIl29renZLd4fJkv0_Xz02r-sE4NA8VTZkHJwghZOIEFcwCGF5XMuQCGlROFoww4BUDkFapKitwhuqosK5tbCfmU3J3_9qH7HGw86robQjtWas6lygWAZKOLnl0mdDEG63Qf_AeGb82oPiHTv8j0CZmmSlOe_wB0BF8J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268345561</pqid></control><display><type>article</type><title>Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Medar, Ramesh A. ; Rajpurohit, Vijay S. ; Ambekar, Anand M.</creator><creatorcontrib>Medar, Ramesh A. ; Rajpurohit, Vijay S. ; Ambekar, Anand M. ; KLS Gogte Institute of Technology, Belagavi, 590008, India</creatorcontrib><description>Agriculture is the most important sector in the Indian economy and contributes 18% of Gross Domestic Product (GDP). India is the second largest producer of sugarcane crop and produces about 20% of the world's sugarcane. In this paper, a novel approach to sugarcane yield forecasting in Karnataka(India) region using Long-Term-Time-Series (LTTS), Weather-and-soil attributes, Normalized Vegetation Index(NDVI) and Supervised machine learning(SML) algorithms have been proposed. Sugarcane Cultivation Life Cycle (SCLC) in Karnataka(India) region is about 12 months, with plantation beginning at three different seasons. Our approach divides yield forecasting into three stages, i)soil-and-weather attributes are predicted for the duration of SCLC, ii)NDVI is predicted using Support Vector Machine Regression (SVR) algorithm by considering soil-and-weather attributes as input, iii)sugarcane crop is predicted using SVR by considering NDVI as input. Our approach has been verified using historical dataset and results have shown that our approach has successfully modeled soil and weather attributes prediction as 24 steps LTTS with accuracy of 85.24% for Soil Temperature given by Lasso algorithm, 85.372% accuracy for Temperature given by Naive-Bayes algorithm, accuracy for Soil Moisture is 77.46% given by Naive-Bayes, NDVI prediction with accuracy of 89.97% given by SVR-RBF, crop prediction with accuracy of 83.49% given by SVR-RBF.</description><identifier>ISSN: 2074-904X</identifier><identifier>EISSN: 2074-9058</identifier><identifier>DOI: 10.5815/ijisa.2019.08.02</identifier><language>eng</language><publisher>Hong Kong: Modern Education and Computer Science Press</publisher><subject>Accuracy ; Agricultural production ; Agronomy ; Algorithms ; Artificial intelligence ; Crop yield ; Cultivation ; Machine learning ; Mathematical models ; Predictions ; Soil moisture ; Soil temperature ; Soils ; Sugarcane ; Support vector machines ; Vegetation index ; Weather forecasting</subject><ispartof>International journal of intelligent systems and applications, 2019-08, Vol.11 (8), p.11-20</ispartof><rights>2019. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1582-1e5867c467f4a71f55c27b632451abf47f0152055aa2ba8b643faafb99be3e653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Medar, Ramesh A.</creatorcontrib><creatorcontrib>Rajpurohit, Vijay S.</creatorcontrib><creatorcontrib>Ambekar, Anand M.</creatorcontrib><creatorcontrib>KLS Gogte Institute of Technology, Belagavi, 590008, India</creatorcontrib><title>Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning</title><title>International journal of intelligent systems and applications</title><description>Agriculture is the most important sector in the Indian economy and contributes 18% of Gross Domestic Product (GDP). India is the second largest producer of sugarcane crop and produces about 20% of the world's sugarcane. In this paper, a novel approach to sugarcane yield forecasting in Karnataka(India) region using Long-Term-Time-Series (LTTS), Weather-and-soil attributes, Normalized Vegetation Index(NDVI) and Supervised machine learning(SML) algorithms have been proposed. Sugarcane Cultivation Life Cycle (SCLC) in Karnataka(India) region is about 12 months, with plantation beginning at three different seasons. Our approach divides yield forecasting into three stages, i)soil-and-weather attributes are predicted for the duration of SCLC, ii)NDVI is predicted using Support Vector Machine Regression (SVR) algorithm by considering soil-and-weather attributes as input, iii)sugarcane crop is predicted using SVR by considering NDVI as input. Our approach has been verified using historical dataset and results have shown that our approach has successfully modeled soil and weather attributes prediction as 24 steps LTTS with accuracy of 85.24% for Soil Temperature given by Lasso algorithm, 85.372% accuracy for Temperature given by Naive-Bayes algorithm, accuracy for Soil Moisture is 77.46% given by Naive-Bayes, NDVI prediction with accuracy of 89.97% given by SVR-RBF, crop prediction with accuracy of 83.49% given by SVR-RBF.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Agronomy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Crop yield</subject><subject>Cultivation</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Predictions</subject><subject>Soil moisture</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Sugarcane</subject><subject>Support vector machines</subject><subject>Vegetation index</subject><subject>Weather forecasting</subject><issn>2074-904X</issn><issn>2074-9058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kMFLwzAUxoMoOObuHgueW5M0L02PMpwbbHiYAz2F1yyZKbWtySr439s58V3eB-_73gc_Qm4ZzUAxuPe1j5hxysqMqozyCzLhtBBpSUFd_mvxek1mMdZ0HKmEYuWELLfDAYPB1ibz0PXJm7fNPll0wRqMR98ekk23t02yiye9HXobvny0-2SD5t2PqbXF0I63G3LlsIl29renZLd4fJkv0_Xz02r-sE4NA8VTZkHJwghZOIEFcwCGF5XMuQCGlROFoww4BUDkFapKitwhuqosK5tbCfmU3J3_9qH7HGw86robQjtWas6lygWAZKOLnl0mdDEG63Qf_AeGb82oPiHTv8j0CZmmSlOe_wB0BF8J</recordid><startdate>20190808</startdate><enddate>20190808</enddate><creator>Medar, Ramesh A.</creator><creator>Rajpurohit, Vijay S.</creator><creator>Ambekar, Anand M.</creator><general>Modern Education and Computer Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20190808</creationdate><title>Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning</title><author>Medar, Ramesh A. ; Rajpurohit, Vijay S. ; Ambekar, Anand M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1582-1e5867c467f4a71f55c27b632451abf47f0152055aa2ba8b643faafb99be3e653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Agronomy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Crop yield</topic><topic>Cultivation</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Predictions</topic><topic>Soil moisture</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Sugarcane</topic><topic>Support vector machines</topic><topic>Vegetation index</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Medar, Ramesh A.</creatorcontrib><creatorcontrib>Rajpurohit, Vijay S.</creatorcontrib><creatorcontrib>Ambekar, Anand M.</creatorcontrib><creatorcontrib>KLS Gogte Institute of Technology, Belagavi, 590008, India</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medar, Ramesh A.</au><au>Rajpurohit, Vijay S.</au><au>Ambekar, Anand M.</au><aucorp>KLS Gogte Institute of Technology, Belagavi, 590008, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning</atitle><jtitle>International journal of intelligent systems and applications</jtitle><date>2019-08-08</date><risdate>2019</risdate><volume>11</volume><issue>8</issue><spage>11</spage><epage>20</epage><pages>11-20</pages><issn>2074-904X</issn><eissn>2074-9058</eissn><abstract>Agriculture is the most important sector in the Indian economy and contributes 18% of Gross Domestic Product (GDP). India is the second largest producer of sugarcane crop and produces about 20% of the world's sugarcane. In this paper, a novel approach to sugarcane yield forecasting in Karnataka(India) region using Long-Term-Time-Series (LTTS), Weather-and-soil attributes, Normalized Vegetation Index(NDVI) and Supervised machine learning(SML) algorithms have been proposed. Sugarcane Cultivation Life Cycle (SCLC) in Karnataka(India) region is about 12 months, with plantation beginning at three different seasons. Our approach divides yield forecasting into three stages, i)soil-and-weather attributes are predicted for the duration of SCLC, ii)NDVI is predicted using Support Vector Machine Regression (SVR) algorithm by considering soil-and-weather attributes as input, iii)sugarcane crop is predicted using SVR by considering NDVI as input. Our approach has been verified using historical dataset and results have shown that our approach has successfully modeled soil and weather attributes prediction as 24 steps LTTS with accuracy of 85.24% for Soil Temperature given by Lasso algorithm, 85.372% accuracy for Temperature given by Naive-Bayes algorithm, accuracy for Soil Moisture is 77.46% given by Naive-Bayes, NDVI prediction with accuracy of 89.97% given by SVR-RBF, crop prediction with accuracy of 83.49% given by SVR-RBF.</abstract><cop>Hong Kong</cop><pub>Modern Education and Computer Science Press</pub><doi>10.5815/ijisa.2019.08.02</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2074-904X |
ispartof | International journal of intelligent systems and applications, 2019-08, Vol.11 (8), p.11-20 |
issn | 2074-904X 2074-9058 |
language | eng |
recordid | cdi_proquest_journals_2268345561 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Agricultural production Agronomy Algorithms Artificial intelligence Crop yield Cultivation Machine learning Mathematical models Predictions Soil moisture Soil temperature Soils Sugarcane Support vector machines Vegetation index Weather forecasting |
title | Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sugarcane%20Crop%20Yield%20Forecasting%20Model%20Using%20Supervised%20Machine%20Learning&rft.jtitle=International%20journal%20of%20intelligent%20systems%20and%20applications&rft.au=Medar,%20Ramesh%20A.&rft.aucorp=KLS%20Gogte%20Institute%20of%20Technology,%20Belagavi,%20590008,%20India&rft.date=2019-08-08&rft.volume=11&rft.issue=8&rft.spage=11&rft.epage=20&rft.pages=11-20&rft.issn=2074-904X&rft.eissn=2074-9058&rft_id=info:doi/10.5815/ijisa.2019.08.02&rft_dat=%3Cproquest_cross%3E2268345561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268345561&rft_id=info:pmid/&rfr_iscdi=true |