Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning

Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecosphere (Washington, D.C) D.C), 2018-10, Vol.9 (10), p.n/a
Hauptverfasser: Hirakawa, Tsubasa, Yamashita, Takayoshi, Tamaki, Toru, Fujiyoshi, Hironobu, Umezu, Yuta, Takeuchi, Ichiro, Matsumoto, Sakiko, Yoda, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Ecosphere (Washington, D.C)
container_volume 9
creator Hirakawa, Tsubasa
Yamashita, Takayoshi
Tamaki, Toru
Fujiyoshi, Hironobu
Umezu, Yuta
Takeuchi, Ichiro
Matsumoto, Sakiko
Yoda, Ken
description Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement learning (IRL) framework, we have developed a novel gap‐filling method to predict the most likely route that an animal would have traveled; within this framework, an algorithm learns a reward function from animal trajectories to find the environmental features preferred by the animal. We applied this approach to GPS trajectories obtained from streaked shearwaters (Calonectris leucomelas) and provide evidence of the advantages of the IRL approach over previously used interpolation methods. These advantages are as follows: (1) No assumptions about the parametric distribution governing movements are needed, (2) no assumptions regarding landscape preferences and restrictions are needed, and (3) large spatiotemporal gaps can be filled. This work demonstrates how IRL can enhance the ability to fill gaps in animal trajectories and construct reward‐space maps in heterogeneous environments. The proposed methodology can assist movement research, which seeks to understand phenomena that are ecologically and evolutionarily significant, such as habitat selection and migration.
doi_str_mv 10.1002/ecs2.2447
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268301981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268301981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3987-98c29fb53fcabbc465c36e9ebeeb179f0e5ebe3ed8b2dcb67ba1888189447d433</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGoP_oOAJw_b5mM_kpOU0mqh4EE9L0l2tqRss2uyrfTfm20VvDiXeWGemeF9EbqnZEoJYTMwgU1ZmhZXaMRoRhIhWXb9R9-iSQg7EitLC5HyEbIL5fB8jTsPlTU9Vs7uVYP37RH24PrwhFe2aazb4q3qArbul-i92oHpW28h4EMYCOuO4ANgD9bVrTfnC7gB5V0c36GbWjUBJj99jD5Wy_fFS7J5fV4v5pvEcCmKRArDZK0zXhultUnzzPAcJGgATQtZE8ii5lAJzSqj80IrKoSgQkbfVcr5GD1c7na-_TxA6Mtde_AuviwZywUnVAoaqccLZXwbgoe67Hz05U8lJeUQZjmEWQ5hRnZ2Yb9sA6f_wXK5eGPnjW8gPnee</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268301981</pqid></control><display><type>article</type><title>Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hirakawa, Tsubasa ; Yamashita, Takayoshi ; Tamaki, Toru ; Fujiyoshi, Hironobu ; Umezu, Yuta ; Takeuchi, Ichiro ; Matsumoto, Sakiko ; Yoda, Ken</creator><creatorcontrib>Hirakawa, Tsubasa ; Yamashita, Takayoshi ; Tamaki, Toru ; Fujiyoshi, Hironobu ; Umezu, Yuta ; Takeuchi, Ichiro ; Matsumoto, Sakiko ; Yoda, Ken</creatorcontrib><description>Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement learning (IRL) framework, we have developed a novel gap‐filling method to predict the most likely route that an animal would have traveled; within this framework, an algorithm learns a reward function from animal trajectories to find the environmental features preferred by the animal. We applied this approach to GPS trajectories obtained from streaked shearwaters (Calonectris leucomelas) and provide evidence of the advantages of the IRL approach over previously used interpolation methods. These advantages are as follows: (1) No assumptions about the parametric distribution governing movements are needed, (2) no assumptions regarding landscape preferences and restrictions are needed, and (3) large spatiotemporal gaps can be filled. This work demonstrates how IRL can enhance the ability to fill gaps in animal trajectories and construct reward‐space maps in heterogeneous environments. The proposed methodology can assist movement research, which seeks to understand phenomena that are ecologically and evolutionarily significant, such as habitat selection and migration.</description><identifier>ISSN: 2150-8925</identifier><identifier>EISSN: 2150-8925</identifier><identifier>DOI: 10.1002/ecs2.2447</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Animal behavior ; animal movement ; behavioral monitoring ; biotelemetry ; bio‐logging ; Calonectris leucomelas ; Costs ; Global positioning systems ; GPS ; Habitat selection ; interpolation ; inverse reinforcement learning ; Landscape ; machine learning ; Methods ; Migration ; Recording ; reward map ; Satellites ; Sensors ; tracking data</subject><ispartof>Ecosphere (Washington, D.C), 2018-10, Vol.9 (10), p.n/a</ispartof><rights>2018 The Authors.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3987-98c29fb53fcabbc465c36e9ebeeb179f0e5ebe3ed8b2dcb67ba1888189447d433</citedby><cites>FETCH-LOGICAL-c3987-98c29fb53fcabbc465c36e9ebeeb179f0e5ebe3ed8b2dcb67ba1888189447d433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fecs2.2447$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fecs2.2447$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Hirakawa, Tsubasa</creatorcontrib><creatorcontrib>Yamashita, Takayoshi</creatorcontrib><creatorcontrib>Tamaki, Toru</creatorcontrib><creatorcontrib>Fujiyoshi, Hironobu</creatorcontrib><creatorcontrib>Umezu, Yuta</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Matsumoto, Sakiko</creatorcontrib><creatorcontrib>Yoda, Ken</creatorcontrib><title>Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning</title><title>Ecosphere (Washington, D.C)</title><description>Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement learning (IRL) framework, we have developed a novel gap‐filling method to predict the most likely route that an animal would have traveled; within this framework, an algorithm learns a reward function from animal trajectories to find the environmental features preferred by the animal. We applied this approach to GPS trajectories obtained from streaked shearwaters (Calonectris leucomelas) and provide evidence of the advantages of the IRL approach over previously used interpolation methods. These advantages are as follows: (1) No assumptions about the parametric distribution governing movements are needed, (2) no assumptions regarding landscape preferences and restrictions are needed, and (3) large spatiotemporal gaps can be filled. This work demonstrates how IRL can enhance the ability to fill gaps in animal trajectories and construct reward‐space maps in heterogeneous environments. The proposed methodology can assist movement research, which seeks to understand phenomena that are ecologically and evolutionarily significant, such as habitat selection and migration.</description><subject>Animal behavior</subject><subject>animal movement</subject><subject>behavioral monitoring</subject><subject>biotelemetry</subject><subject>bio‐logging</subject><subject>Calonectris leucomelas</subject><subject>Costs</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Habitat selection</subject><subject>interpolation</subject><subject>inverse reinforcement learning</subject><subject>Landscape</subject><subject>machine learning</subject><subject>Methods</subject><subject>Migration</subject><subject>Recording</subject><subject>reward map</subject><subject>Satellites</subject><subject>Sensors</subject><subject>tracking data</subject><issn>2150-8925</issn><issn>2150-8925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWGoP_oOAJw_b5mM_kpOU0mqh4EE9L0l2tqRss2uyrfTfm20VvDiXeWGemeF9EbqnZEoJYTMwgU1ZmhZXaMRoRhIhWXb9R9-iSQg7EitLC5HyEbIL5fB8jTsPlTU9Vs7uVYP37RH24PrwhFe2aazb4q3qArbul-i92oHpW28h4EMYCOuO4ANgD9bVrTfnC7gB5V0c36GbWjUBJj99jD5Wy_fFS7J5fV4v5pvEcCmKRArDZK0zXhultUnzzPAcJGgATQtZE8ii5lAJzSqj80IrKoSgQkbfVcr5GD1c7na-_TxA6Mtde_AuviwZywUnVAoaqccLZXwbgoe67Hz05U8lJeUQZjmEWQ5hRnZ2Yb9sA6f_wXK5eGPnjW8gPnee</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Hirakawa, Tsubasa</creator><creator>Yamashita, Takayoshi</creator><creator>Tamaki, Toru</creator><creator>Fujiyoshi, Hironobu</creator><creator>Umezu, Yuta</creator><creator>Takeuchi, Ichiro</creator><creator>Matsumoto, Sakiko</creator><creator>Yoda, Ken</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201810</creationdate><title>Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning</title><author>Hirakawa, Tsubasa ; Yamashita, Takayoshi ; Tamaki, Toru ; Fujiyoshi, Hironobu ; Umezu, Yuta ; Takeuchi, Ichiro ; Matsumoto, Sakiko ; Yoda, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3987-98c29fb53fcabbc465c36e9ebeeb179f0e5ebe3ed8b2dcb67ba1888189447d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal behavior</topic><topic>animal movement</topic><topic>behavioral monitoring</topic><topic>biotelemetry</topic><topic>bio‐logging</topic><topic>Calonectris leucomelas</topic><topic>Costs</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Habitat selection</topic><topic>interpolation</topic><topic>inverse reinforcement learning</topic><topic>Landscape</topic><topic>machine learning</topic><topic>Methods</topic><topic>Migration</topic><topic>Recording</topic><topic>reward map</topic><topic>Satellites</topic><topic>Sensors</topic><topic>tracking data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirakawa, Tsubasa</creatorcontrib><creatorcontrib>Yamashita, Takayoshi</creatorcontrib><creatorcontrib>Tamaki, Toru</creatorcontrib><creatorcontrib>Fujiyoshi, Hironobu</creatorcontrib><creatorcontrib>Umezu, Yuta</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Matsumoto, Sakiko</creatorcontrib><creatorcontrib>Yoda, Ken</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Ecosphere (Washington, D.C)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirakawa, Tsubasa</au><au>Yamashita, Takayoshi</au><au>Tamaki, Toru</au><au>Fujiyoshi, Hironobu</au><au>Umezu, Yuta</au><au>Takeuchi, Ichiro</au><au>Matsumoto, Sakiko</au><au>Yoda, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning</atitle><jtitle>Ecosphere (Washington, D.C)</jtitle><date>2018-10</date><risdate>2018</risdate><volume>9</volume><issue>10</issue><epage>n/a</epage><issn>2150-8925</issn><eissn>2150-8925</eissn><abstract>Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement learning (IRL) framework, we have developed a novel gap‐filling method to predict the most likely route that an animal would have traveled; within this framework, an algorithm learns a reward function from animal trajectories to find the environmental features preferred by the animal. We applied this approach to GPS trajectories obtained from streaked shearwaters (Calonectris leucomelas) and provide evidence of the advantages of the IRL approach over previously used interpolation methods. These advantages are as follows: (1) No assumptions about the parametric distribution governing movements are needed, (2) no assumptions regarding landscape preferences and restrictions are needed, and (3) large spatiotemporal gaps can be filled. This work demonstrates how IRL can enhance the ability to fill gaps in animal trajectories and construct reward‐space maps in heterogeneous environments. The proposed methodology can assist movement research, which seeks to understand phenomena that are ecologically and evolutionarily significant, such as habitat selection and migration.</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ecs2.2447</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2150-8925
ispartof Ecosphere (Washington, D.C), 2018-10, Vol.9 (10), p.n/a
issn 2150-8925
2150-8925
language eng
recordid cdi_proquest_journals_2268301981
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Animal behavior
animal movement
behavioral monitoring
biotelemetry
bio‐logging
Calonectris leucomelas
Costs
Global positioning systems
GPS
Habitat selection
interpolation
inverse reinforcement learning
Landscape
machine learning
Methods
Migration
Recording
reward map
Satellites
Sensors
tracking data
title Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20AI%20predict%20animal%20movements?%20Filling%20gaps%20in%20animal%20trajectories%20using%20inverse%20reinforcement%20learning&rft.jtitle=Ecosphere%20(Washington,%20D.C)&rft.au=Hirakawa,%20Tsubasa&rft.date=2018-10&rft.volume=9&rft.issue=10&rft.epage=n/a&rft.issn=2150-8925&rft.eissn=2150-8925&rft_id=info:doi/10.1002/ecs2.2447&rft_dat=%3Cproquest_cross%3E2268301981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268301981&rft_id=info:pmid/&rfr_iscdi=true