Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning
Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement...
Gespeichert in:
Veröffentlicht in: | Ecosphere (Washington, D.C) D.C), 2018-10, Vol.9 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Ecosphere (Washington, D.C) |
container_volume | 9 |
creator | Hirakawa, Tsubasa Yamashita, Takayoshi Tamaki, Toru Fujiyoshi, Hironobu Umezu, Yuta Takeuchi, Ichiro Matsumoto, Sakiko Yoda, Ken |
description | Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement learning (IRL) framework, we have developed a novel gap‐filling method to predict the most likely route that an animal would have traveled; within this framework, an algorithm learns a reward function from animal trajectories to find the environmental features preferred by the animal. We applied this approach to GPS trajectories obtained from streaked shearwaters (Calonectris leucomelas) and provide evidence of the advantages of the IRL approach over previously used interpolation methods. These advantages are as follows: (1) No assumptions about the parametric distribution governing movements are needed, (2) no assumptions regarding landscape preferences and restrictions are needed, and (3) large spatiotemporal gaps can be filled. This work demonstrates how IRL can enhance the ability to fill gaps in animal trajectories and construct reward‐space maps in heterogeneous environments. The proposed methodology can assist movement research, which seeks to understand phenomena that are ecologically and evolutionarily significant, such as habitat selection and migration. |
doi_str_mv | 10.1002/ecs2.2447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268301981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268301981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3987-98c29fb53fcabbc465c36e9ebeeb179f0e5ebe3ed8b2dcb67ba1888189447d433</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGoP_oOAJw_b5mM_kpOU0mqh4EE9L0l2tqRss2uyrfTfm20VvDiXeWGemeF9EbqnZEoJYTMwgU1ZmhZXaMRoRhIhWXb9R9-iSQg7EitLC5HyEbIL5fB8jTsPlTU9Vs7uVYP37RH24PrwhFe2aazb4q3qArbul-i92oHpW28h4EMYCOuO4ANgD9bVrTfnC7gB5V0c36GbWjUBJj99jD5Wy_fFS7J5fV4v5pvEcCmKRArDZK0zXhultUnzzPAcJGgATQtZE8ii5lAJzSqj80IrKoSgQkbfVcr5GD1c7na-_TxA6Mtde_AuviwZywUnVAoaqccLZXwbgoe67Hz05U8lJeUQZjmEWQ5hRnZ2Yb9sA6f_wXK5eGPnjW8gPnee</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268301981</pqid></control><display><type>article</type><title>Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hirakawa, Tsubasa ; Yamashita, Takayoshi ; Tamaki, Toru ; Fujiyoshi, Hironobu ; Umezu, Yuta ; Takeuchi, Ichiro ; Matsumoto, Sakiko ; Yoda, Ken</creator><creatorcontrib>Hirakawa, Tsubasa ; Yamashita, Takayoshi ; Tamaki, Toru ; Fujiyoshi, Hironobu ; Umezu, Yuta ; Takeuchi, Ichiro ; Matsumoto, Sakiko ; Yoda, Ken</creatorcontrib><description>Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement learning (IRL) framework, we have developed a novel gap‐filling method to predict the most likely route that an animal would have traveled; within this framework, an algorithm learns a reward function from animal trajectories to find the environmental features preferred by the animal. We applied this approach to GPS trajectories obtained from streaked shearwaters (Calonectris leucomelas) and provide evidence of the advantages of the IRL approach over previously used interpolation methods. These advantages are as follows: (1) No assumptions about the parametric distribution governing movements are needed, (2) no assumptions regarding landscape preferences and restrictions are needed, and (3) large spatiotemporal gaps can be filled. This work demonstrates how IRL can enhance the ability to fill gaps in animal trajectories and construct reward‐space maps in heterogeneous environments. The proposed methodology can assist movement research, which seeks to understand phenomena that are ecologically and evolutionarily significant, such as habitat selection and migration.</description><identifier>ISSN: 2150-8925</identifier><identifier>EISSN: 2150-8925</identifier><identifier>DOI: 10.1002/ecs2.2447</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Animal behavior ; animal movement ; behavioral monitoring ; biotelemetry ; bio‐logging ; Calonectris leucomelas ; Costs ; Global positioning systems ; GPS ; Habitat selection ; interpolation ; inverse reinforcement learning ; Landscape ; machine learning ; Methods ; Migration ; Recording ; reward map ; Satellites ; Sensors ; tracking data</subject><ispartof>Ecosphere (Washington, D.C), 2018-10, Vol.9 (10), p.n/a</ispartof><rights>2018 The Authors.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3987-98c29fb53fcabbc465c36e9ebeeb179f0e5ebe3ed8b2dcb67ba1888189447d433</citedby><cites>FETCH-LOGICAL-c3987-98c29fb53fcabbc465c36e9ebeeb179f0e5ebe3ed8b2dcb67ba1888189447d433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fecs2.2447$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fecs2.2447$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Hirakawa, Tsubasa</creatorcontrib><creatorcontrib>Yamashita, Takayoshi</creatorcontrib><creatorcontrib>Tamaki, Toru</creatorcontrib><creatorcontrib>Fujiyoshi, Hironobu</creatorcontrib><creatorcontrib>Umezu, Yuta</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Matsumoto, Sakiko</creatorcontrib><creatorcontrib>Yoda, Ken</creatorcontrib><title>Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning</title><title>Ecosphere (Washington, D.C)</title><description>Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement learning (IRL) framework, we have developed a novel gap‐filling method to predict the most likely route that an animal would have traveled; within this framework, an algorithm learns a reward function from animal trajectories to find the environmental features preferred by the animal. We applied this approach to GPS trajectories obtained from streaked shearwaters (Calonectris leucomelas) and provide evidence of the advantages of the IRL approach over previously used interpolation methods. These advantages are as follows: (1) No assumptions about the parametric distribution governing movements are needed, (2) no assumptions regarding landscape preferences and restrictions are needed, and (3) large spatiotemporal gaps can be filled. This work demonstrates how IRL can enhance the ability to fill gaps in animal trajectories and construct reward‐space maps in heterogeneous environments. The proposed methodology can assist movement research, which seeks to understand phenomena that are ecologically and evolutionarily significant, such as habitat selection and migration.</description><subject>Animal behavior</subject><subject>animal movement</subject><subject>behavioral monitoring</subject><subject>biotelemetry</subject><subject>bio‐logging</subject><subject>Calonectris leucomelas</subject><subject>Costs</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Habitat selection</subject><subject>interpolation</subject><subject>inverse reinforcement learning</subject><subject>Landscape</subject><subject>machine learning</subject><subject>Methods</subject><subject>Migration</subject><subject>Recording</subject><subject>reward map</subject><subject>Satellites</subject><subject>Sensors</subject><subject>tracking data</subject><issn>2150-8925</issn><issn>2150-8925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWGoP_oOAJw_b5mM_kpOU0mqh4EE9L0l2tqRss2uyrfTfm20VvDiXeWGemeF9EbqnZEoJYTMwgU1ZmhZXaMRoRhIhWXb9R9-iSQg7EitLC5HyEbIL5fB8jTsPlTU9Vs7uVYP37RH24PrwhFe2aazb4q3qArbul-i92oHpW28h4EMYCOuO4ANgD9bVrTfnC7gB5V0c36GbWjUBJj99jD5Wy_fFS7J5fV4v5pvEcCmKRArDZK0zXhultUnzzPAcJGgATQtZE8ii5lAJzSqj80IrKoSgQkbfVcr5GD1c7na-_TxA6Mtde_AuviwZywUnVAoaqccLZXwbgoe67Hz05U8lJeUQZjmEWQ5hRnZ2Yb9sA6f_wXK5eGPnjW8gPnee</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Hirakawa, Tsubasa</creator><creator>Yamashita, Takayoshi</creator><creator>Tamaki, Toru</creator><creator>Fujiyoshi, Hironobu</creator><creator>Umezu, Yuta</creator><creator>Takeuchi, Ichiro</creator><creator>Matsumoto, Sakiko</creator><creator>Yoda, Ken</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201810</creationdate><title>Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning</title><author>Hirakawa, Tsubasa ; Yamashita, Takayoshi ; Tamaki, Toru ; Fujiyoshi, Hironobu ; Umezu, Yuta ; Takeuchi, Ichiro ; Matsumoto, Sakiko ; Yoda, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3987-98c29fb53fcabbc465c36e9ebeeb179f0e5ebe3ed8b2dcb67ba1888189447d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal behavior</topic><topic>animal movement</topic><topic>behavioral monitoring</topic><topic>biotelemetry</topic><topic>bio‐logging</topic><topic>Calonectris leucomelas</topic><topic>Costs</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Habitat selection</topic><topic>interpolation</topic><topic>inverse reinforcement learning</topic><topic>Landscape</topic><topic>machine learning</topic><topic>Methods</topic><topic>Migration</topic><topic>Recording</topic><topic>reward map</topic><topic>Satellites</topic><topic>Sensors</topic><topic>tracking data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirakawa, Tsubasa</creatorcontrib><creatorcontrib>Yamashita, Takayoshi</creatorcontrib><creatorcontrib>Tamaki, Toru</creatorcontrib><creatorcontrib>Fujiyoshi, Hironobu</creatorcontrib><creatorcontrib>Umezu, Yuta</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Matsumoto, Sakiko</creatorcontrib><creatorcontrib>Yoda, Ken</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Ecosphere (Washington, D.C)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirakawa, Tsubasa</au><au>Yamashita, Takayoshi</au><au>Tamaki, Toru</au><au>Fujiyoshi, Hironobu</au><au>Umezu, Yuta</au><au>Takeuchi, Ichiro</au><au>Matsumoto, Sakiko</au><au>Yoda, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning</atitle><jtitle>Ecosphere (Washington, D.C)</jtitle><date>2018-10</date><risdate>2018</risdate><volume>9</volume><issue>10</issue><epage>n/a</epage><issn>2150-8925</issn><eissn>2150-8925</eissn><abstract>Focal animal sampling and continuous recording of behavior in situ are essential in the study of ecology. However, observation gaps and missing records are unavoidable because the focal individual can move out of sight and recording devices do not always work properly. Using an inverse reinforcement learning (IRL) framework, we have developed a novel gap‐filling method to predict the most likely route that an animal would have traveled; within this framework, an algorithm learns a reward function from animal trajectories to find the environmental features preferred by the animal. We applied this approach to GPS trajectories obtained from streaked shearwaters (Calonectris leucomelas) and provide evidence of the advantages of the IRL approach over previously used interpolation methods. These advantages are as follows: (1) No assumptions about the parametric distribution governing movements are needed, (2) no assumptions regarding landscape preferences and restrictions are needed, and (3) large spatiotemporal gaps can be filled. This work demonstrates how IRL can enhance the ability to fill gaps in animal trajectories and construct reward‐space maps in heterogeneous environments. The proposed methodology can assist movement research, which seeks to understand phenomena that are ecologically and evolutionarily significant, such as habitat selection and migration.</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ecs2.2447</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8925 |
ispartof | Ecosphere (Washington, D.C), 2018-10, Vol.9 (10), p.n/a |
issn | 2150-8925 2150-8925 |
language | eng |
recordid | cdi_proquest_journals_2268301981 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Animal behavior animal movement behavioral monitoring biotelemetry bio‐logging Calonectris leucomelas Costs Global positioning systems GPS Habitat selection interpolation inverse reinforcement learning Landscape machine learning Methods Migration Recording reward map Satellites Sensors tracking data |
title | Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20AI%20predict%20animal%20movements?%20Filling%20gaps%20in%20animal%20trajectories%20using%20inverse%20reinforcement%20learning&rft.jtitle=Ecosphere%20(Washington,%20D.C)&rft.au=Hirakawa,%20Tsubasa&rft.date=2018-10&rft.volume=9&rft.issue=10&rft.epage=n/a&rft.issn=2150-8925&rft.eissn=2150-8925&rft_id=info:doi/10.1002/ecs2.2447&rft_dat=%3Cproquest_cross%3E2268301981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268301981&rft_id=info:pmid/&rfr_iscdi=true |