Distribution Law and Prediction Model of Dust Concentration under Airflow Adjustment in Fully Mechanized Heading Face

The current situation of extensive ventilation management for the fully mechanized heading face cannot dynamically control air velocity and make reasonable dust migration distribution, resulting in serious disaster of dust and environmental pollution in the roadway. In this paper, the fluid mechanic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-17
Hauptverfasser: Xue, He, Lei, Kefan, Cui, Jian, Sun, Kang, Jia, Congcong, Gong, Xiaoyan, Xue, Yuxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current situation of extensive ventilation management for the fully mechanized heading face cannot dynamically control air velocity and make reasonable dust migration distribution, resulting in serious disaster of dust and environmental pollution in the roadway. In this paper, the fluid mechanics, finite element numerical simulation, and underground measurement were combined to analyze the distribution of dust concentration under the variable airflow state at the duct outlet to obtain the massive correlation data of duct outlet parameters and dust concentration. For the pedestrian breathing-height in the backflow side and driver location, the double-objective BP prediction model for dust concentration under airflow adjustment was established, and the performance parameters and prediction accuracy of the BP prediction model were analyzed by using the relative error and fitting analysis. In Ningtiaota coal mine, located in Northern Shaanxi province of China, the self-developed control device is installed on the duct outlet with underground test and application verification to refine the model. The results indicated the dynamic control of airflow optimizes dust concentration distribution. The dust concentration at the pedestrian breathing-height in the backflow side and driver location was significantly decreased after the installation of adjustment device. Dust concentration at the pedestrian breathing-height and driver location was decreased by 31% and 34%, respectively, compared with the results before adjustment, which achieved the safe, environment-friendly, and energy-saving ventilation and the dust removal function in fully mechanized heading face.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/6210704