A general dissipativity constraint for feedback system design, with emphasis on MPC
Summary A “general dissipativity constraint” (GDC) is introduced to facilitate the design of stable feedback systems. A primary application is to MPC controllers when it is preferred to avoid the use of “stabilising ingredients” such as terminal constraint sets or long prediction horizons. Some very...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2019-09, Vol.29 (14), p.4775-4796 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4796 |
---|---|
container_issue | 14 |
container_start_page | 4775 |
container_title | International journal of robust and nonlinear control |
container_volume | 29 |
creator | Tran, Tri Maciejowski, Jan Ling, K‐V. |
description | Summary
A “general dissipativity constraint” (GDC) is introduced to facilitate the design of stable feedback systems. A primary application is to MPC controllers when it is preferred to avoid the use of “stabilising ingredients” such as terminal constraint sets or long prediction horizons. Some very general convergence results are proved under mild conditions. The use of quadratic functions, replacing GDC by “quadratic dissipativity constraint” (QDC), is introduced to allow implementation using linear matrix inequalities. The use of QDC is illustrated for several scenarios: state feedback for a linear time‐invariant system, MPC of a linear system, MPC of an input‐affine system, and MPC with persistent disturbances. The stability that is guaranteed by GDC is weaker than Lyapunov stability, being “Lagrange stability plus convergence.” Input‐to‐state stability is obtained if the control law is continuous in the state. An example involving an open‐loop unstable helicopter illustrates the efficacy of the approach in practice. |
doi_str_mv | 10.1002/rnc.4651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268229101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268229101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3641-a15e60424bfc58dae261977d499b5f62ce7a4cc0b37f8d3f5a770dd5025f2183</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYq-AgBNy6cmmSSmcmyDN6gXtDuQyaXNrXNjElqmbd3at26OgfOx3_gB-ASowlGiNwGrya0YPgIjDDiPMMk58f7nfKs4iQ_BWcxrhAaboSOwMcULow3Qa6hdjG6Tib37VIPVetjCtL5BG0boDVGN1J9wtjHZDZQm-gW_gbuXFpCs-mWMroIWw-f3-pzcGLlOpqLvzkG8_u7ef2YzV4fnurpLFN5QXEmMTMFooQ2VrFKS0MKzMtSU84bZguiTCmpUqjJS1vp3DJZlkhrhgizBFf5GFwdYrvQfm1NTGLVboMfPgpCiooQjhEe1PVBqdDGGIwVXXAbGXqBkdg3JobGxL6xgWYHunNr0__rxPtL_et_ANOGbEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268229101</pqid></control><display><type>article</type><title>A general dissipativity constraint for feedback system design, with emphasis on MPC</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tran, Tri ; Maciejowski, Jan ; Ling, K‐V.</creator><creatorcontrib>Tran, Tri ; Maciejowski, Jan ; Ling, K‐V.</creatorcontrib><description>Summary
A “general dissipativity constraint” (GDC) is introduced to facilitate the design of stable feedback systems. A primary application is to MPC controllers when it is preferred to avoid the use of “stabilising ingredients” such as terminal constraint sets or long prediction horizons. Some very general convergence results are proved under mild conditions. The use of quadratic functions, replacing GDC by “quadratic dissipativity constraint” (QDC), is introduced to allow implementation using linear matrix inequalities. The use of QDC is illustrated for several scenarios: state feedback for a linear time‐invariant system, MPC of a linear system, MPC of an input‐affine system, and MPC with persistent disturbances. The stability that is guaranteed by GDC is weaker than Lyapunov stability, being “Lagrange stability plus convergence.” Input‐to‐state stability is obtained if the control law is continuous in the state. An example involving an open‐loop unstable helicopter illustrates the efficacy of the approach in practice.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4651</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control stability ; Control theory ; Convergence ; dissipativity ; feedback design ; Helicopters ; Linear matrix inequalities ; linear matrix inequality ; Mathematical analysis ; Matrix methods ; model predictive control ; quadratic dissipativity constraint ; Quadratic equations ; State feedback ; Systems design ; Terminal constraints</subject><ispartof>International journal of robust and nonlinear control, 2019-09, Vol.29 (14), p.4775-4796</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3641-a15e60424bfc58dae261977d499b5f62ce7a4cc0b37f8d3f5a770dd5025f2183</citedby><cites>FETCH-LOGICAL-c3641-a15e60424bfc58dae261977d499b5f62ce7a4cc0b37f8d3f5a770dd5025f2183</cites><orcidid>0000-0003-2344-3448 ; 0000-0002-9293-9394 ; 0000-0001-8281-8364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Tran, Tri</creatorcontrib><creatorcontrib>Maciejowski, Jan</creatorcontrib><creatorcontrib>Ling, K‐V.</creatorcontrib><title>A general dissipativity constraint for feedback system design, with emphasis on MPC</title><title>International journal of robust and nonlinear control</title><description>Summary
A “general dissipativity constraint” (GDC) is introduced to facilitate the design of stable feedback systems. A primary application is to MPC controllers when it is preferred to avoid the use of “stabilising ingredients” such as terminal constraint sets or long prediction horizons. Some very general convergence results are proved under mild conditions. The use of quadratic functions, replacing GDC by “quadratic dissipativity constraint” (QDC), is introduced to allow implementation using linear matrix inequalities. The use of QDC is illustrated for several scenarios: state feedback for a linear time‐invariant system, MPC of a linear system, MPC of an input‐affine system, and MPC with persistent disturbances. The stability that is guaranteed by GDC is weaker than Lyapunov stability, being “Lagrange stability plus convergence.” Input‐to‐state stability is obtained if the control law is continuous in the state. An example involving an open‐loop unstable helicopter illustrates the efficacy of the approach in practice.</description><subject>Control stability</subject><subject>Control theory</subject><subject>Convergence</subject><subject>dissipativity</subject><subject>feedback design</subject><subject>Helicopters</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>model predictive control</subject><subject>quadratic dissipativity constraint</subject><subject>Quadratic equations</subject><subject>State feedback</subject><subject>Systems design</subject><subject>Terminal constraints</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYq-AgBNy6cmmSSmcmyDN6gXtDuQyaXNrXNjElqmbd3at26OgfOx3_gB-ASowlGiNwGrya0YPgIjDDiPMMk58f7nfKs4iQ_BWcxrhAaboSOwMcULow3Qa6hdjG6Tib37VIPVetjCtL5BG0boDVGN1J9wtjHZDZQm-gW_gbuXFpCs-mWMroIWw-f3-pzcGLlOpqLvzkG8_u7ef2YzV4fnurpLFN5QXEmMTMFooQ2VrFKS0MKzMtSU84bZguiTCmpUqjJS1vp3DJZlkhrhgizBFf5GFwdYrvQfm1NTGLVboMfPgpCiooQjhEe1PVBqdDGGIwVXXAbGXqBkdg3JobGxL6xgWYHunNr0__rxPtL_et_ANOGbEo</recordid><startdate>20190925</startdate><enddate>20190925</enddate><creator>Tran, Tri</creator><creator>Maciejowski, Jan</creator><creator>Ling, K‐V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2344-3448</orcidid><orcidid>https://orcid.org/0000-0002-9293-9394</orcidid><orcidid>https://orcid.org/0000-0001-8281-8364</orcidid></search><sort><creationdate>20190925</creationdate><title>A general dissipativity constraint for feedback system design, with emphasis on MPC</title><author>Tran, Tri ; Maciejowski, Jan ; Ling, K‐V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3641-a15e60424bfc58dae261977d499b5f62ce7a4cc0b37f8d3f5a770dd5025f2183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Control stability</topic><topic>Control theory</topic><topic>Convergence</topic><topic>dissipativity</topic><topic>feedback design</topic><topic>Helicopters</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>model predictive control</topic><topic>quadratic dissipativity constraint</topic><topic>Quadratic equations</topic><topic>State feedback</topic><topic>Systems design</topic><topic>Terminal constraints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Tri</creatorcontrib><creatorcontrib>Maciejowski, Jan</creatorcontrib><creatorcontrib>Ling, K‐V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Tri</au><au>Maciejowski, Jan</au><au>Ling, K‐V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general dissipativity constraint for feedback system design, with emphasis on MPC</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2019-09-25</date><risdate>2019</risdate><volume>29</volume><issue>14</issue><spage>4775</spage><epage>4796</epage><pages>4775-4796</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
A “general dissipativity constraint” (GDC) is introduced to facilitate the design of stable feedback systems. A primary application is to MPC controllers when it is preferred to avoid the use of “stabilising ingredients” such as terminal constraint sets or long prediction horizons. Some very general convergence results are proved under mild conditions. The use of quadratic functions, replacing GDC by “quadratic dissipativity constraint” (QDC), is introduced to allow implementation using linear matrix inequalities. The use of QDC is illustrated for several scenarios: state feedback for a linear time‐invariant system, MPC of a linear system, MPC of an input‐affine system, and MPC with persistent disturbances. The stability that is guaranteed by GDC is weaker than Lyapunov stability, being “Lagrange stability plus convergence.” Input‐to‐state stability is obtained if the control law is continuous in the state. An example involving an open‐loop unstable helicopter illustrates the efficacy of the approach in practice.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4651</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2344-3448</orcidid><orcidid>https://orcid.org/0000-0002-9293-9394</orcidid><orcidid>https://orcid.org/0000-0001-8281-8364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2019-09, Vol.29 (14), p.4775-4796 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2268229101 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Control stability Control theory Convergence dissipativity feedback design Helicopters Linear matrix inequalities linear matrix inequality Mathematical analysis Matrix methods model predictive control quadratic dissipativity constraint Quadratic equations State feedback Systems design Terminal constraints |
title | A general dissipativity constraint for feedback system design, with emphasis on MPC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20dissipativity%20constraint%20for%20feedback%20system%20design,%20with%20emphasis%20on%20MPC&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Tran,%20Tri&rft.date=2019-09-25&rft.volume=29&rft.issue=14&rft.spage=4775&rft.epage=4796&rft.pages=4775-4796&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4651&rft_dat=%3Cproquest_cross%3E2268229101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268229101&rft_id=info:pmid/&rfr_iscdi=true |