Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source
An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary...
Gespeichert in:
Veröffentlicht in: | Heat transfer, Asian research Asian research, 2019-09, Vol.48 (6), p.2105-2121 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2121 |
---|---|
container_issue | 6 |
container_start_page | 2105 |
container_title | Heat transfer, Asian research |
container_volume | 48 |
creator | Sharma, Ram Prakash Seshadri, Rajeswari Mishra, S. R. Munjam, Shankar Rao |
description | An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary differential equations employing appropriate transformations. Validation of the present result is done with the help of error analysis for flow and temperature. The influences of pertinent parameters on momentum, energy, and Nusselt number are studied and discussed. The major findings are: the velocity of the nanofluid is affected by the nanoparticle volume fraction and the thickness of the thermal boundary layer becomes thinner and thinner subject to sink, whereas the effect is revered in case of the source. |
doi_str_mv | 10.1002/htj.21474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268052574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268052574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-32002618954e7626c630bd7702c103fff1763a7261f142d502ec0c2f10af8c1d3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIazs_TpaoKhRUiU1ZR8YeNy6JXexEKDuOwJrjcRLchi3SSDMafW-e5kXRNcEzgjGd191uRknK0pNoQjKaxCQt89Mw47KMacHIeXTh_Q5jwoqCTaLvpVIgOmQV6mpwLW-Q41LzTluDQrV8a6Cz9SCdlYPhrRYBdAA_n19St2B8AIOotaNCIY4MN1Y1vZZoz30XFr522rxps0W-d4oLQL2R4A6OSJuAggm7o7YG3iFveyfgMjpTvPFw9den0cv9crNYxevnh8fF3ToWSZKmcULD3zkpyiwFltNc5Al-lYxhKghOlFKE5QlnAVEkpTLDFAQWVBHMVSGITKbRzXh37-x7D76rdsE_POUrSvMCZzRjaaBuR0o4670DVe2dbrkbKoKrQ_RViL46Rh_Y-ch-6AaG_8FqtXkaFb_hv4hk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268052574</pqid></control><display><type>article</type><title>Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sharma, Ram Prakash ; Seshadri, Rajeswari ; Mishra, S. R. ; Munjam, Shankar Rao</creator><creatorcontrib>Sharma, Ram Prakash ; Seshadri, Rajeswari ; Mishra, S. R. ; Munjam, Shankar Rao</creatorcontrib><description>An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary differential equations employing appropriate transformations. Validation of the present result is done with the help of error analysis for flow and temperature. The influences of pertinent parameters on momentum, energy, and Nusselt number are studied and discussed. The major findings are: the velocity of the nanofluid is affected by the nanoparticle volume fraction and the thickness of the thermal boundary layer becomes thinner and thinner subject to sink, whereas the effect is revered in case of the source.</description><identifier>ISSN: 1099-2871</identifier><identifier>EISSN: 1523-1496</identifier><identifier>DOI: 10.1002/htj.21474</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Error analysis ; Fluid dynamics ; Fluid flow ; heat source ; homotopy analysis method (HAM) ; magnetohydrodynamic (MHD) ; Magnetohydrodynamics ; Mathematical analysis ; nanofluid ; Nanofluids ; Nanoparticles ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Partial differential equations ; Porous media ; shrinking sheet ; Thermal boundary layer ; Thermal radiation ; Viscosity</subject><ispartof>Heat transfer, Asian research, 2019-09, Vol.48 (6), p.2105-2121</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-32002618954e7626c630bd7702c103fff1763a7261f142d502ec0c2f10af8c1d3</citedby><cites>FETCH-LOGICAL-c3344-32002618954e7626c630bd7702c103fff1763a7261f142d502ec0c2f10af8c1d3</cites><orcidid>0000-0002-3359-1316 ; 0000-0002-3018-394X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.21474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.21474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sharma, Ram Prakash</creatorcontrib><creatorcontrib>Seshadri, Rajeswari</creatorcontrib><creatorcontrib>Mishra, S. R.</creatorcontrib><creatorcontrib>Munjam, Shankar Rao</creatorcontrib><title>Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source</title><title>Heat transfer, Asian research</title><description>An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary differential equations employing appropriate transformations. Validation of the present result is done with the help of error analysis for flow and temperature. The influences of pertinent parameters on momentum, energy, and Nusselt number are studied and discussed. The major findings are: the velocity of the nanofluid is affected by the nanoparticle volume fraction and the thickness of the thermal boundary layer becomes thinner and thinner subject to sink, whereas the effect is revered in case of the source.</description><subject>Error analysis</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>heat source</subject><subject>homotopy analysis method (HAM)</subject><subject>magnetohydrodynamic (MHD)</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>nanofluid</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Porous media</subject><subject>shrinking sheet</subject><subject>Thermal boundary layer</subject><subject>Thermal radiation</subject><subject>Viscosity</subject><issn>1099-2871</issn><issn>1523-1496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIazs_TpaoKhRUiU1ZR8YeNy6JXexEKDuOwJrjcRLchi3SSDMafW-e5kXRNcEzgjGd191uRknK0pNoQjKaxCQt89Mw47KMacHIeXTh_Q5jwoqCTaLvpVIgOmQV6mpwLW-Q41LzTluDQrV8a6Cz9SCdlYPhrRYBdAA_n19St2B8AIOotaNCIY4MN1Y1vZZoz30XFr522rxps0W-d4oLQL2R4A6OSJuAggm7o7YG3iFveyfgMjpTvPFw9den0cv9crNYxevnh8fF3ToWSZKmcULD3zkpyiwFltNc5Al-lYxhKghOlFKE5QlnAVEkpTLDFAQWVBHMVSGITKbRzXh37-x7D76rdsE_POUrSvMCZzRjaaBuR0o4670DVe2dbrkbKoKrQ_RViL46Rh_Y-ch-6AaG_8FqtXkaFb_hv4hk</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Sharma, Ram Prakash</creator><creator>Seshadri, Rajeswari</creator><creator>Mishra, S. R.</creator><creator>Munjam, Shankar Rao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3359-1316</orcidid><orcidid>https://orcid.org/0000-0002-3018-394X</orcidid></search><sort><creationdate>201909</creationdate><title>Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source</title><author>Sharma, Ram Prakash ; Seshadri, Rajeswari ; Mishra, S. R. ; Munjam, Shankar Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-32002618954e7626c630bd7702c103fff1763a7261f142d502ec0c2f10af8c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Error analysis</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>heat source</topic><topic>homotopy analysis method (HAM)</topic><topic>magnetohydrodynamic (MHD)</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>nanofluid</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Porous media</topic><topic>shrinking sheet</topic><topic>Thermal boundary layer</topic><topic>Thermal radiation</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Ram Prakash</creatorcontrib><creatorcontrib>Seshadri, Rajeswari</creatorcontrib><creatorcontrib>Mishra, S. R.</creatorcontrib><creatorcontrib>Munjam, Shankar Rao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Heat transfer, Asian research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Ram Prakash</au><au>Seshadri, Rajeswari</au><au>Mishra, S. R.</au><au>Munjam, Shankar Rao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source</atitle><jtitle>Heat transfer, Asian research</jtitle><date>2019-09</date><risdate>2019</risdate><volume>48</volume><issue>6</issue><spage>2105</spage><epage>2121</epage><pages>2105-2121</pages><issn>1099-2871</issn><eissn>1523-1496</eissn><abstract>An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary differential equations employing appropriate transformations. Validation of the present result is done with the help of error analysis for flow and temperature. The influences of pertinent parameters on momentum, energy, and Nusselt number are studied and discussed. The major findings are: the velocity of the nanofluid is affected by the nanoparticle volume fraction and the thickness of the thermal boundary layer becomes thinner and thinner subject to sink, whereas the effect is revered in case of the source.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/htj.21474</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3359-1316</orcidid><orcidid>https://orcid.org/0000-0002-3018-394X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-2871 |
ispartof | Heat transfer, Asian research, 2019-09, Vol.48 (6), p.2105-2121 |
issn | 1099-2871 1523-1496 |
language | eng |
recordid | cdi_proquest_journals_2268052574 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Error analysis Fluid dynamics Fluid flow heat source homotopy analysis method (HAM) magnetohydrodynamic (MHD) Magnetohydrodynamics Mathematical analysis nanofluid Nanofluids Nanoparticles Nonlinear differential equations Nonlinear equations Ordinary differential equations Partial differential equations Porous media shrinking sheet Thermal boundary layer Thermal radiation Viscosity |
title | Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20thermal%20radiation%20on%20magnetohydrodynamic%20three%E2%80%90dimensional%20motion%20of%20a%20nanofluid%20past%20a%20shrinking%20surface%20under%20the%20influence%20of%20a%20heat%20source&rft.jtitle=Heat%20transfer,%20Asian%20research&rft.au=Sharma,%20Ram%20Prakash&rft.date=2019-09&rft.volume=48&rft.issue=6&rft.spage=2105&rft.epage=2121&rft.pages=2105-2121&rft.issn=1099-2871&rft.eissn=1523-1496&rft_id=info:doi/10.1002/htj.21474&rft_dat=%3Cproquest_cross%3E2268052574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268052574&rft_id=info:pmid/&rfr_iscdi=true |