Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source

An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer, Asian research Asian research, 2019-09, Vol.48 (6), p.2105-2121
Hauptverfasser: Sharma, Ram Prakash, Seshadri, Rajeswari, Mishra, S. R., Munjam, Shankar Rao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2121
container_issue 6
container_start_page 2105
container_title Heat transfer, Asian research
container_volume 48
creator Sharma, Ram Prakash
Seshadri, Rajeswari
Mishra, S. R.
Munjam, Shankar Rao
description An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary differential equations employing appropriate transformations. Validation of the present result is done with the help of error analysis for flow and temperature. The influences of pertinent parameters on momentum, energy, and Nusselt number are studied and discussed. The major findings are: the velocity of the nanofluid is affected by the nanoparticle volume fraction and the thickness of the thermal boundary layer becomes thinner and thinner subject to sink, whereas the effect is revered in case of the source.
doi_str_mv 10.1002/htj.21474
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268052574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268052574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-32002618954e7626c630bd7702c103fff1763a7261f142d502ec0c2f10af8c1d3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIazs_TpaoKhRUiU1ZR8YeNy6JXexEKDuOwJrjcRLchi3SSDMafW-e5kXRNcEzgjGd191uRknK0pNoQjKaxCQt89Mw47KMacHIeXTh_Q5jwoqCTaLvpVIgOmQV6mpwLW-Q41LzTluDQrV8a6Cz9SCdlYPhrRYBdAA_n19St2B8AIOotaNCIY4MN1Y1vZZoz30XFr522rxps0W-d4oLQL2R4A6OSJuAggm7o7YG3iFveyfgMjpTvPFw9den0cv9crNYxevnh8fF3ToWSZKmcULD3zkpyiwFltNc5Al-lYxhKghOlFKE5QlnAVEkpTLDFAQWVBHMVSGITKbRzXh37-x7D76rdsE_POUrSvMCZzRjaaBuR0o4670DVe2dbrkbKoKrQ_RViL46Rh_Y-ch-6AaG_8FqtXkaFb_hv4hk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268052574</pqid></control><display><type>article</type><title>Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sharma, Ram Prakash ; Seshadri, Rajeswari ; Mishra, S. R. ; Munjam, Shankar Rao</creator><creatorcontrib>Sharma, Ram Prakash ; Seshadri, Rajeswari ; Mishra, S. R. ; Munjam, Shankar Rao</creatorcontrib><description>An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary differential equations employing appropriate transformations. Validation of the present result is done with the help of error analysis for flow and temperature. The influences of pertinent parameters on momentum, energy, and Nusselt number are studied and discussed. The major findings are: the velocity of the nanofluid is affected by the nanoparticle volume fraction and the thickness of the thermal boundary layer becomes thinner and thinner subject to sink, whereas the effect is revered in case of the source.</description><identifier>ISSN: 1099-2871</identifier><identifier>EISSN: 1523-1496</identifier><identifier>DOI: 10.1002/htj.21474</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Error analysis ; Fluid dynamics ; Fluid flow ; heat source ; homotopy analysis method (HAM) ; magnetohydrodynamic (MHD) ; Magnetohydrodynamics ; Mathematical analysis ; nanofluid ; Nanofluids ; Nanoparticles ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Partial differential equations ; Porous media ; shrinking sheet ; Thermal boundary layer ; Thermal radiation ; Viscosity</subject><ispartof>Heat transfer, Asian research, 2019-09, Vol.48 (6), p.2105-2121</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-32002618954e7626c630bd7702c103fff1763a7261f142d502ec0c2f10af8c1d3</citedby><cites>FETCH-LOGICAL-c3344-32002618954e7626c630bd7702c103fff1763a7261f142d502ec0c2f10af8c1d3</cites><orcidid>0000-0002-3359-1316 ; 0000-0002-3018-394X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.21474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.21474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sharma, Ram Prakash</creatorcontrib><creatorcontrib>Seshadri, Rajeswari</creatorcontrib><creatorcontrib>Mishra, S. R.</creatorcontrib><creatorcontrib>Munjam, Shankar Rao</creatorcontrib><title>Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source</title><title>Heat transfer, Asian research</title><description>An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary differential equations employing appropriate transformations. Validation of the present result is done with the help of error analysis for flow and temperature. The influences of pertinent parameters on momentum, energy, and Nusselt number are studied and discussed. The major findings are: the velocity of the nanofluid is affected by the nanoparticle volume fraction and the thickness of the thermal boundary layer becomes thinner and thinner subject to sink, whereas the effect is revered in case of the source.</description><subject>Error analysis</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>heat source</subject><subject>homotopy analysis method (HAM)</subject><subject>magnetohydrodynamic (MHD)</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>nanofluid</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Porous media</subject><subject>shrinking sheet</subject><subject>Thermal boundary layer</subject><subject>Thermal radiation</subject><subject>Viscosity</subject><issn>1099-2871</issn><issn>1523-1496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqWw4AaWWLFIazs_TpaoKhRUiU1ZR8YeNy6JXexEKDuOwJrjcRLchi3SSDMafW-e5kXRNcEzgjGd191uRknK0pNoQjKaxCQt89Mw47KMacHIeXTh_Q5jwoqCTaLvpVIgOmQV6mpwLW-Q41LzTluDQrV8a6Cz9SCdlYPhrRYBdAA_n19St2B8AIOotaNCIY4MN1Y1vZZoz30XFr522rxps0W-d4oLQL2R4A6OSJuAggm7o7YG3iFveyfgMjpTvPFw9den0cv9crNYxevnh8fF3ToWSZKmcULD3zkpyiwFltNc5Al-lYxhKghOlFKE5QlnAVEkpTLDFAQWVBHMVSGITKbRzXh37-x7D76rdsE_POUrSvMCZzRjaaBuR0o4670DVe2dbrkbKoKrQ_RViL46Rh_Y-ch-6AaG_8FqtXkaFb_hv4hk</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Sharma, Ram Prakash</creator><creator>Seshadri, Rajeswari</creator><creator>Mishra, S. R.</creator><creator>Munjam, Shankar Rao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3359-1316</orcidid><orcidid>https://orcid.org/0000-0002-3018-394X</orcidid></search><sort><creationdate>201909</creationdate><title>Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source</title><author>Sharma, Ram Prakash ; Seshadri, Rajeswari ; Mishra, S. R. ; Munjam, Shankar Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-32002618954e7626c630bd7702c103fff1763a7261f142d502ec0c2f10af8c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Error analysis</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>heat source</topic><topic>homotopy analysis method (HAM)</topic><topic>magnetohydrodynamic (MHD)</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>nanofluid</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Porous media</topic><topic>shrinking sheet</topic><topic>Thermal boundary layer</topic><topic>Thermal radiation</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Ram Prakash</creatorcontrib><creatorcontrib>Seshadri, Rajeswari</creatorcontrib><creatorcontrib>Mishra, S. R.</creatorcontrib><creatorcontrib>Munjam, Shankar Rao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Heat transfer, Asian research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Ram Prakash</au><au>Seshadri, Rajeswari</au><au>Mishra, S. R.</au><au>Munjam, Shankar Rao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source</atitle><jtitle>Heat transfer, Asian research</jtitle><date>2019-09</date><risdate>2019</risdate><volume>48</volume><issue>6</issue><spage>2105</spage><epage>2121</epage><pages>2105-2121</pages><issn>1099-2871</issn><eissn>1523-1496</eissn><abstract>An analytical technique known as the homotopy analysis method is used to acquire solutions for magnetohydrodynamic 3‐D motion of a viscous nanofluid over a saturated porous medium with a heat source and thermal radiation. The governing nonlinear partial differential equations are changed to ordinary differential equations employing appropriate transformations. Validation of the present result is done with the help of error analysis for flow and temperature. The influences of pertinent parameters on momentum, energy, and Nusselt number are studied and discussed. The major findings are: the velocity of the nanofluid is affected by the nanoparticle volume fraction and the thickness of the thermal boundary layer becomes thinner and thinner subject to sink, whereas the effect is revered in case of the source.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/htj.21474</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3359-1316</orcidid><orcidid>https://orcid.org/0000-0002-3018-394X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1099-2871
ispartof Heat transfer, Asian research, 2019-09, Vol.48 (6), p.2105-2121
issn 1099-2871
1523-1496
language eng
recordid cdi_proquest_journals_2268052574
source Wiley Online Library Journals Frontfile Complete
subjects Error analysis
Fluid dynamics
Fluid flow
heat source
homotopy analysis method (HAM)
magnetohydrodynamic (MHD)
Magnetohydrodynamics
Mathematical analysis
nanofluid
Nanofluids
Nanoparticles
Nonlinear differential equations
Nonlinear equations
Ordinary differential equations
Partial differential equations
Porous media
shrinking sheet
Thermal boundary layer
Thermal radiation
Viscosity
title Effect of thermal radiation on magnetohydrodynamic three‐dimensional motion of a nanofluid past a shrinking surface under the influence of a heat source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20thermal%20radiation%20on%20magnetohydrodynamic%20three%E2%80%90dimensional%20motion%20of%20a%20nanofluid%20past%20a%20shrinking%20surface%20under%20the%20influence%20of%20a%20heat%20source&rft.jtitle=Heat%20transfer,%20Asian%20research&rft.au=Sharma,%20Ram%20Prakash&rft.date=2019-09&rft.volume=48&rft.issue=6&rft.spage=2105&rft.epage=2121&rft.pages=2105-2121&rft.issn=1099-2871&rft.eissn=1523-1496&rft_id=info:doi/10.1002/htj.21474&rft_dat=%3Cproquest_cross%3E2268052574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268052574&rft_id=info:pmid/&rfr_iscdi=true