Nuclear reconstructive feature extraction

In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2019-07, Vol.31 (7), p.2649-2659
Hauptverfasser: Wang, Haiyan, Liu, Dujin, Pu, Guolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2659
container_issue 7
container_start_page 2649
container_title Neural computing & applications
container_volume 31
creator Wang, Haiyan
Liu, Dujin
Pu, Guolin
description In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods.
doi_str_mv 10.1007/s00521-017-3220-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267639691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267639691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c3ced4411e59a5a743b4392006245192e718bd2c186d1f48ffcd0615488453f03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCJw-rM8kkmxyl-AVFL3oOaTaRlrpbk13Rf2_KCp68zMDM-wEPY-cIVwjQXGcAybEGbGrBOdR0wGZIQtQCpD5kMzBUvorEMTvJeQMApLScscun0W-DS1UKvu_ykEY_rD9DFYMbxhSq8DUkV059d8qOotvmcPa75-z17vZl8VAvn-8fFzfL2gtUQ5k-tESIQRonXUNiRcJwAMVJouGhQb1quUetWoykY_QtKJSkNUkRQczZxZS7S_3HGPJgN_2YulJpOVeNEkYZLCqcVD71OacQ7S6t3136tgh2T8RORGwhYvdELBUPnzy5aLu3kP6S_zf9AI5mYWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267639691</pqid></control><display><type>article</type><title>Nuclear reconstructive feature extraction</title><source>SpringerLink Journals</source><creator>Wang, Haiyan ; Liu, Dujin ; Pu, Guolin</creator><creatorcontrib>Wang, Haiyan ; Liu, Dujin ; Pu, Guolin</creatorcontrib><description>In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-017-3220-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Error analysis ; Feature extraction ; Image Processing and Computer Vision ; Learning ; Mapping ; Original Article ; Pattern classification ; Probability and Statistics in Computer Science ; Reconstruction ; Subspace methods ; Subspaces</subject><ispartof>Neural computing &amp; applications, 2019-07, Vol.31 (7), p.2649-2659</ispartof><rights>The Natural Computing Applications Forum 2017</rights><rights>Neural Computing and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c3ced4411e59a5a743b4392006245192e718bd2c186d1f48ffcd0615488453f03</citedby><cites>FETCH-LOGICAL-c316t-c3ced4411e59a5a743b4392006245192e718bd2c186d1f48ffcd0615488453f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-017-3220-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-017-3220-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Liu, Dujin</creatorcontrib><creatorcontrib>Pu, Guolin</creatorcontrib><title>Nuclear reconstructive feature extraction</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Mapping</subject><subject>Original Article</subject><subject>Pattern classification</subject><subject>Probability and Statistics in Computer Science</subject><subject>Reconstruction</subject><subject>Subspace methods</subject><subject>Subspaces</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCJw-rM8kkmxyl-AVFL3oOaTaRlrpbk13Rf2_KCp68zMDM-wEPY-cIVwjQXGcAybEGbGrBOdR0wGZIQtQCpD5kMzBUvorEMTvJeQMApLScscun0W-DS1UKvu_ykEY_rD9DFYMbxhSq8DUkV059d8qOotvmcPa75-z17vZl8VAvn-8fFzfL2gtUQ5k-tESIQRonXUNiRcJwAMVJouGhQb1quUetWoykY_QtKJSkNUkRQczZxZS7S_3HGPJgN_2YulJpOVeNEkYZLCqcVD71OacQ7S6t3136tgh2T8RORGwhYvdELBUPnzy5aLu3kP6S_zf9AI5mYWI</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Wang, Haiyan</creator><creator>Liu, Dujin</creator><creator>Pu, Guolin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190701</creationdate><title>Nuclear reconstructive feature extraction</title><author>Wang, Haiyan ; Liu, Dujin ; Pu, Guolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c3ced4411e59a5a743b4392006245192e718bd2c186d1f48ffcd0615488453f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Mapping</topic><topic>Original Article</topic><topic>Pattern classification</topic><topic>Probability and Statistics in Computer Science</topic><topic>Reconstruction</topic><topic>Subspace methods</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Liu, Dujin</creatorcontrib><creatorcontrib>Pu, Guolin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyan</au><au>Liu, Dujin</au><au>Pu, Guolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear reconstructive feature extraction</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>31</volume><issue>7</issue><spage>2649</spage><epage>2659</epage><pages>2649-2659</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-017-3220-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2019-07, Vol.31 (7), p.2649-2659
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2267639691
source SpringerLink Journals
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Error analysis
Feature extraction
Image Processing and Computer Vision
Learning
Mapping
Original Article
Pattern classification
Probability and Statistics in Computer Science
Reconstruction
Subspace methods
Subspaces
title Nuclear reconstructive feature extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20reconstructive%20feature%20extraction&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Wang,%20Haiyan&rft.date=2019-07-01&rft.volume=31&rft.issue=7&rft.spage=2649&rft.epage=2659&rft.pages=2649-2659&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-017-3220-4&rft_dat=%3Cproquest_cross%3E2267639691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267639691&rft_id=info:pmid/&rfr_iscdi=true