Nuclear reconstructive feature extraction
In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2019-07, Vol.31 (7), p.2649-2659 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2659 |
---|---|
container_issue | 7 |
container_start_page | 2649 |
container_title | Neural computing & applications |
container_volume | 31 |
creator | Wang, Haiyan Liu, Dujin Pu, Guolin |
description | In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods. |
doi_str_mv | 10.1007/s00521-017-3220-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267639691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267639691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c3ced4411e59a5a743b4392006245192e718bd2c186d1f48ffcd0615488453f03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCJw-rM8kkmxyl-AVFL3oOaTaRlrpbk13Rf2_KCp68zMDM-wEPY-cIVwjQXGcAybEGbGrBOdR0wGZIQtQCpD5kMzBUvorEMTvJeQMApLScscun0W-DS1UKvu_ykEY_rD9DFYMbxhSq8DUkV059d8qOotvmcPa75-z17vZl8VAvn-8fFzfL2gtUQ5k-tESIQRonXUNiRcJwAMVJouGhQb1quUetWoykY_QtKJSkNUkRQczZxZS7S_3HGPJgN_2YulJpOVeNEkYZLCqcVD71OacQ7S6t3136tgh2T8RORGwhYvdELBUPnzy5aLu3kP6S_zf9AI5mYWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267639691</pqid></control><display><type>article</type><title>Nuclear reconstructive feature extraction</title><source>SpringerLink Journals</source><creator>Wang, Haiyan ; Liu, Dujin ; Pu, Guolin</creator><creatorcontrib>Wang, Haiyan ; Liu, Dujin ; Pu, Guolin</creatorcontrib><description>In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-017-3220-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Error analysis ; Feature extraction ; Image Processing and Computer Vision ; Learning ; Mapping ; Original Article ; Pattern classification ; Probability and Statistics in Computer Science ; Reconstruction ; Subspace methods ; Subspaces</subject><ispartof>Neural computing & applications, 2019-07, Vol.31 (7), p.2649-2659</ispartof><rights>The Natural Computing Applications Forum 2017</rights><rights>Neural Computing and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c3ced4411e59a5a743b4392006245192e718bd2c186d1f48ffcd0615488453f03</citedby><cites>FETCH-LOGICAL-c316t-c3ced4411e59a5a743b4392006245192e718bd2c186d1f48ffcd0615488453f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-017-3220-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-017-3220-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Liu, Dujin</creatorcontrib><creatorcontrib>Pu, Guolin</creatorcontrib><title>Nuclear reconstructive feature extraction</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Mapping</subject><subject>Original Article</subject><subject>Pattern classification</subject><subject>Probability and Statistics in Computer Science</subject><subject>Reconstruction</subject><subject>Subspace methods</subject><subject>Subspaces</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCJw-rM8kkmxyl-AVFL3oOaTaRlrpbk13Rf2_KCp68zMDM-wEPY-cIVwjQXGcAybEGbGrBOdR0wGZIQtQCpD5kMzBUvorEMTvJeQMApLScscun0W-DS1UKvu_ykEY_rD9DFYMbxhSq8DUkV059d8qOotvmcPa75-z17vZl8VAvn-8fFzfL2gtUQ5k-tESIQRonXUNiRcJwAMVJouGhQb1quUetWoykY_QtKJSkNUkRQczZxZS7S_3HGPJgN_2YulJpOVeNEkYZLCqcVD71OacQ7S6t3136tgh2T8RORGwhYvdELBUPnzy5aLu3kP6S_zf9AI5mYWI</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Wang, Haiyan</creator><creator>Liu, Dujin</creator><creator>Pu, Guolin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190701</creationdate><title>Nuclear reconstructive feature extraction</title><author>Wang, Haiyan ; Liu, Dujin ; Pu, Guolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c3ced4411e59a5a743b4392006245192e718bd2c186d1f48ffcd0615488453f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Mapping</topic><topic>Original Article</topic><topic>Pattern classification</topic><topic>Probability and Statistics in Computer Science</topic><topic>Reconstruction</topic><topic>Subspace methods</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Liu, Dujin</creatorcontrib><creatorcontrib>Pu, Guolin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyan</au><au>Liu, Dujin</au><au>Pu, Guolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear reconstructive feature extraction</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>31</volume><issue>7</issue><spage>2649</spage><epage>2659</epage><pages>2649-2659</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, we propose a novel feature extraction method for pattern classification problem. We propose to map the original data to subspaces for feature extraction and hope the mapped data can reconstruct the original data. The motive is to avoid of losing of information of the original data in the process of subspace mapping. We assume that if the original data can be reconstructed from the subspace, the critical information can be preserved. Moreover, we also observed that the reconstruction error is a low-rank matrix if the reconstruction is performed well. We propose to measure the reconstruction error matrix rank by the nuclear norm and minimize it to learn the optimal subspace transformation matrix. Meanwhile, the classification is also used to regularize the learning to improve the discriminate ability of the subspace representations. Experiments over several benchmark data sets show the advantage of the proposed method over the existing subspace learning methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-017-3220-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2019-07, Vol.31 (7), p.2649-2659 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2267639691 |
source | SpringerLink Journals |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Error analysis Feature extraction Image Processing and Computer Vision Learning Mapping Original Article Pattern classification Probability and Statistics in Computer Science Reconstruction Subspace methods Subspaces |
title | Nuclear reconstructive feature extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20reconstructive%20feature%20extraction&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Wang,%20Haiyan&rft.date=2019-07-01&rft.volume=31&rft.issue=7&rft.spage=2649&rft.epage=2659&rft.pages=2649-2659&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-017-3220-4&rft_dat=%3Cproquest_cross%3E2267639691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267639691&rft_id=info:pmid/&rfr_iscdi=true |