An ensemble of LSTM neural networks for high‐frequency stock market classification

We propose an ensemble of long–short‐term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2019-09, Vol.38 (6), p.600-619
Hauptverfasser: Borovkova, Svetlana, Tsiamas, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue 6
container_start_page 600
container_title Journal of forecasting
container_volume 38
creator Borovkova, Svetlana
Tsiamas, Ioannis
description We propose an ensemble of long–short‐term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performance, which allows us to deal with possible nonstationarities in an innovative way. The performance of the models is measured by area under the curve of the receiver operating characteristic. We evaluate the predictive power of our model on several US large‐cap stocks and benchmark it against lasso and ridge logistic classifiers. The proposed model is found to perform better than the benchmark models or equally weighted ensembles.
doi_str_mv 10.1002/for.2585
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267570172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267570172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-354b188365c030dacf522fa84417e4847764aed4b8b62e6be8763a4776295dd73</originalsourceid><addsrcrecordid>eNp1kMtKAzEYhYMoWKvgIwTcuJmay-Qyy1JsFSoFreAuZDKJnXY6qcmU0p2P4DP6JKbWrasDPx_nnP8AcI3RACNE7pwPA8IkOwE9jIoiwxS_nYIeIkJknBf0HFzEuEQICYlJD8yHLbRttOuysdA7OH2ZP8HWboNuknQ7H1YRJk-4qN8X359fLtiPrW3NHsbOmxVc67CyHTSNjrF2tdFd7dtLcOZ0E-3Vn_bB6_h-PnrIprPJ42g4zQwlgmWU5SWWknJmEEWVNo4R4rTMcyxsLnMheK5tlZey5MTy0krBqT6cScGqStA-uDn6boJPrWKnln4b2hSpCOGCCYQFSdTtkTLBxxisU5tQp957hZE6bKbSf-qwWUKzI7qrG7v_l1Pj2fMv_wNyum2i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267570172</pqid></control><display><type>article</type><title>An ensemble of LSTM neural networks for high‐frequency stock market classification</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Borovkova, Svetlana ; Tsiamas, Ioannis</creator><creatorcontrib>Borovkova, Svetlana ; Tsiamas, Ioannis</creatorcontrib><description>We propose an ensemble of long–short‐term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performance, which allows us to deal with possible nonstationarities in an innovative way. The performance of the models is measured by area under the curve of the receiver operating characteristic. We evaluate the predictive power of our model on several US large‐cap stocks and benchmark it against lasso and ridge logistic classifiers. The proposed model is found to perform better than the benchmark models or equally weighted ensembles.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2585</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Classification ; Deep learning ; ensemble models ; Forecasting ; high‐frequency trading ; LSTM neural networks ; Neural networks ; Power ; Securities markets ; Weighting</subject><ispartof>Journal of forecasting, 2019-09, Vol.38 (6), p.600-619</ispartof><rights>2019 The Authors Journal of Forecasting Published by John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-354b188365c030dacf522fa84417e4847764aed4b8b62e6be8763a4776295dd73</citedby><cites>FETCH-LOGICAL-c3275-354b188365c030dacf522fa84417e4847764aed4b8b62e6be8763a4776295dd73</cites><orcidid>0000-0001-6585-999X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2585$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2585$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Borovkova, Svetlana</creatorcontrib><creatorcontrib>Tsiamas, Ioannis</creatorcontrib><title>An ensemble of LSTM neural networks for high‐frequency stock market classification</title><title>Journal of forecasting</title><description>We propose an ensemble of long–short‐term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performance, which allows us to deal with possible nonstationarities in an innovative way. The performance of the models is measured by area under the curve of the receiver operating characteristic. We evaluate the predictive power of our model on several US large‐cap stocks and benchmark it against lasso and ridge logistic classifiers. The proposed model is found to perform better than the benchmark models or equally weighted ensembles.</description><subject>Classification</subject><subject>Deep learning</subject><subject>ensemble models</subject><subject>Forecasting</subject><subject>high‐frequency trading</subject><subject>LSTM neural networks</subject><subject>Neural networks</subject><subject>Power</subject><subject>Securities markets</subject><subject>Weighting</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kMtKAzEYhYMoWKvgIwTcuJmay-Qyy1JsFSoFreAuZDKJnXY6qcmU0p2P4DP6JKbWrasDPx_nnP8AcI3RACNE7pwPA8IkOwE9jIoiwxS_nYIeIkJknBf0HFzEuEQICYlJD8yHLbRttOuysdA7OH2ZP8HWboNuknQ7H1YRJk-4qN8X359fLtiPrW3NHsbOmxVc67CyHTSNjrF2tdFd7dtLcOZ0E-3Vn_bB6_h-PnrIprPJ42g4zQwlgmWU5SWWknJmEEWVNo4R4rTMcyxsLnMheK5tlZey5MTy0krBqT6cScGqStA-uDn6boJPrWKnln4b2hSpCOGCCYQFSdTtkTLBxxisU5tQp957hZE6bKbSf-qwWUKzI7qrG7v_l1Pj2fMv_wNyum2i</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Borovkova, Svetlana</creator><creator>Tsiamas, Ioannis</creator><general>Wiley Periodicals Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-6585-999X</orcidid></search><sort><creationdate>201909</creationdate><title>An ensemble of LSTM neural networks for high‐frequency stock market classification</title><author>Borovkova, Svetlana ; Tsiamas, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-354b188365c030dacf522fa84417e4847764aed4b8b62e6be8763a4776295dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Deep learning</topic><topic>ensemble models</topic><topic>Forecasting</topic><topic>high‐frequency trading</topic><topic>LSTM neural networks</topic><topic>Neural networks</topic><topic>Power</topic><topic>Securities markets</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borovkova, Svetlana</creatorcontrib><creatorcontrib>Tsiamas, Ioannis</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borovkova, Svetlana</au><au>Tsiamas, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble of LSTM neural networks for high‐frequency stock market classification</atitle><jtitle>Journal of forecasting</jtitle><date>2019-09</date><risdate>2019</risdate><volume>38</volume><issue>6</issue><spage>600</spage><epage>619</epage><pages>600-619</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>We propose an ensemble of long–short‐term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performance, which allows us to deal with possible nonstationarities in an innovative way. The performance of the models is measured by area under the curve of the receiver operating characteristic. We evaluate the predictive power of our model on several US large‐cap stocks and benchmark it against lasso and ridge logistic classifiers. The proposed model is found to perform better than the benchmark models or equally weighted ensembles.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2585</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6585-999X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2019-09, Vol.38 (6), p.600-619
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_journals_2267570172
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Classification
Deep learning
ensemble models
Forecasting
high‐frequency trading
LSTM neural networks
Neural networks
Power
Securities markets
Weighting
title An ensemble of LSTM neural networks for high‐frequency stock market classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble%20of%20LSTM%20neural%20networks%20for%20high%E2%80%90frequency%20stock%20market%20classification&rft.jtitle=Journal%20of%20forecasting&rft.au=Borovkova,%20Svetlana&rft.date=2019-09&rft.volume=38&rft.issue=6&rft.spage=600&rft.epage=619&rft.pages=600-619&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2585&rft_dat=%3Cproquest_cross%3E2267570172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267570172&rft_id=info:pmid/&rfr_iscdi=true