Convergence Properties for Discrete-Time Nonlinear Systems

Three similar convergence notions are considered. Two of them are the long established notions of convergent dynamics and incremental stability. The other is the more recent notion of contraction analysis. All three convergence notions require that all solutions of a system converge to each other. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2019-08, Vol.64 (8), p.3415-3422
Hauptverfasser: Tran, Duc N., Ruffer, Bjorn S., Kellett, Christopher M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3422
container_issue 8
container_start_page 3415
container_title IEEE transactions on automatic control
container_volume 64
creator Tran, Duc N.
Ruffer, Bjorn S.
Kellett, Christopher M.
description Three similar convergence notions are considered. Two of them are the long established notions of convergent dynamics and incremental stability. The other is the more recent notion of contraction analysis. All three convergence notions require that all solutions of a system converge to each other. In this note, we investigate the differences between these convergence properties for discrete-time and time-varying nonlinear systems by comparing the properties in pairs and using examples. We also demonstrate a time-varying smooth Lyapunov function characterization for each of these convergence notions, and, with appropriate assumptions, we provide several sufficient conditions to establish relationships between these properties in terms of Lyapunov functions.
doi_str_mv 10.1109/TAC.2018.2879951
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2267546648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8526279</ieee_id><sourcerecordid>2267546648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3c45c0c0964c2076d48c1af1b2e84019fbdd4d39eb99b89c5e022446e724ce43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Tdyexm11uJ9QOKCua-JJuJpLTZupsK_femtHgaXuZ5Z-Bh7FbwmRDcPJTzYgZc6Bno3BgpzthESKlTkJCdswkfV6kBrS7ZVYyrMSpEMWGPhe9_KXxT7yj5DH5LYegoJq0PyVMXXaCB0rLbUPLu-3XXUxWSr30caBOv2UVbrSPdnOaUlc-LsnhNlx8vb8V8mTowYkgzh9Jxx41CBzxXDWonqlbUQBq5MG3dNNhkhmpjam2cJA6AqCgHdITZlN0fz26D_9lRHOzK70I_frQAKpeoFOqR4kfKBR9joNZuQ7epwt4Kbg-C7CjIHgTZk6CxcnesdET0j2sJCnKT_QHAkmCa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267546648</pqid></control><display><type>article</type><title>Convergence Properties for Discrete-Time Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Tran, Duc N. ; Ruffer, Bjorn S. ; Kellett, Christopher M.</creator><creatorcontrib>Tran, Duc N. ; Ruffer, Bjorn S. ; Kellett, Christopher M.</creatorcontrib><description>Three similar convergence notions are considered. Two of them are the long established notions of convergent dynamics and incremental stability. The other is the more recent notion of contraction analysis. All three convergence notions require that all solutions of a system converge to each other. In this note, we investigate the differences between these convergence properties for discrete-time and time-varying nonlinear systems by comparing the properties in pairs and using examples. We also demonstrate a time-varying smooth Lyapunov function characterization for each of these convergence notions, and, with appropriate assumptions, we provide several sufficient conditions to establish relationships between these properties in terms of Lyapunov functions.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2018.2879951</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Contraction analysis ; Convergence ; convergent dynamics ; Discrete time systems ; Dynamic stability ; incremental stability ; Liapunov functions ; Lyapunov methods ; Nonlinear systems ; Properties (attributes) ; Stability analysis ; Stability criteria ; Time-varying systems</subject><ispartof>IEEE transactions on automatic control, 2019-08, Vol.64 (8), p.3415-3422</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3c45c0c0964c2076d48c1af1b2e84019fbdd4d39eb99b89c5e022446e724ce43</citedby><cites>FETCH-LOGICAL-c291t-3c45c0c0964c2076d48c1af1b2e84019fbdd4d39eb99b89c5e022446e724ce43</cites><orcidid>0000-0001-5028-4978 ; 0000-0002-8309-6807 ; 0000-0001-8180-9773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8526279$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8526279$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tran, Duc N.</creatorcontrib><creatorcontrib>Ruffer, Bjorn S.</creatorcontrib><creatorcontrib>Kellett, Christopher M.</creatorcontrib><title>Convergence Properties for Discrete-Time Nonlinear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Three similar convergence notions are considered. Two of them are the long established notions of convergent dynamics and incremental stability. The other is the more recent notion of contraction analysis. All three convergence notions require that all solutions of a system converge to each other. In this note, we investigate the differences between these convergence properties for discrete-time and time-varying nonlinear systems by comparing the properties in pairs and using examples. We also demonstrate a time-varying smooth Lyapunov function characterization for each of these convergence notions, and, with appropriate assumptions, we provide several sufficient conditions to establish relationships between these properties in terms of Lyapunov functions.</description><subject>Asymptotic stability</subject><subject>Contraction analysis</subject><subject>Convergence</subject><subject>convergent dynamics</subject><subject>Discrete time systems</subject><subject>Dynamic stability</subject><subject>incremental stability</subject><subject>Liapunov functions</subject><subject>Lyapunov methods</subject><subject>Nonlinear systems</subject><subject>Properties (attributes)</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Time-varying systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Tdyexm11uJ9QOKCua-JJuJpLTZupsK_femtHgaXuZ5Z-Bh7FbwmRDcPJTzYgZc6Bno3BgpzthESKlTkJCdswkfV6kBrS7ZVYyrMSpEMWGPhe9_KXxT7yj5DH5LYegoJq0PyVMXXaCB0rLbUPLu-3XXUxWSr30caBOv2UVbrSPdnOaUlc-LsnhNlx8vb8V8mTowYkgzh9Jxx41CBzxXDWonqlbUQBq5MG3dNNhkhmpjam2cJA6AqCgHdITZlN0fz26D_9lRHOzK70I_frQAKpeoFOqR4kfKBR9joNZuQ7epwt4Kbg-C7CjIHgTZk6CxcnesdET0j2sJCnKT_QHAkmCa</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Tran, Duc N.</creator><creator>Ruffer, Bjorn S.</creator><creator>Kellett, Christopher M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5028-4978</orcidid><orcidid>https://orcid.org/0000-0002-8309-6807</orcidid><orcidid>https://orcid.org/0000-0001-8180-9773</orcidid></search><sort><creationdate>20190801</creationdate><title>Convergence Properties for Discrete-Time Nonlinear Systems</title><author>Tran, Duc N. ; Ruffer, Bjorn S. ; Kellett, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3c45c0c0964c2076d48c1af1b2e84019fbdd4d39eb99b89c5e022446e724ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic stability</topic><topic>Contraction analysis</topic><topic>Convergence</topic><topic>convergent dynamics</topic><topic>Discrete time systems</topic><topic>Dynamic stability</topic><topic>incremental stability</topic><topic>Liapunov functions</topic><topic>Lyapunov methods</topic><topic>Nonlinear systems</topic><topic>Properties (attributes)</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Time-varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Duc N.</creatorcontrib><creatorcontrib>Ruffer, Bjorn S.</creatorcontrib><creatorcontrib>Kellett, Christopher M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tran, Duc N.</au><au>Ruffer, Bjorn S.</au><au>Kellett, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Properties for Discrete-Time Nonlinear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>64</volume><issue>8</issue><spage>3415</spage><epage>3422</epage><pages>3415-3422</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Three similar convergence notions are considered. Two of them are the long established notions of convergent dynamics and incremental stability. The other is the more recent notion of contraction analysis. All three convergence notions require that all solutions of a system converge to each other. In this note, we investigate the differences between these convergence properties for discrete-time and time-varying nonlinear systems by comparing the properties in pairs and using examples. We also demonstrate a time-varying smooth Lyapunov function characterization for each of these convergence notions, and, with appropriate assumptions, we provide several sufficient conditions to establish relationships between these properties in terms of Lyapunov functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2018.2879951</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5028-4978</orcidid><orcidid>https://orcid.org/0000-0002-8309-6807</orcidid><orcidid>https://orcid.org/0000-0001-8180-9773</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2019-08, Vol.64 (8), p.3415-3422
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2267546648
source IEEE Electronic Library (IEL)
subjects Asymptotic stability
Contraction analysis
Convergence
convergent dynamics
Discrete time systems
Dynamic stability
incremental stability
Liapunov functions
Lyapunov methods
Nonlinear systems
Properties (attributes)
Stability analysis
Stability criteria
Time-varying systems
title Convergence Properties for Discrete-Time Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Properties%20for%20Discrete-Time%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Tran,%20Duc%20N.&rft.date=2019-08-01&rft.volume=64&rft.issue=8&rft.spage=3415&rft.epage=3422&rft.pages=3415-3422&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2018.2879951&rft_dat=%3Cproquest_RIE%3E2267546648%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267546648&rft_id=info:pmid/&rft_ieee_id=8526279&rfr_iscdi=true