Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples

Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2020-01, Vol.49 (1), p.173-187
Hauptverfasser: Soares, Thiago, Cruz, Clarissa, Silva, Bismarck, Brito, Crystopher, Garcia, Amauri, Spinelli, José Eduardo, Cheung, Noé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 1
container_start_page 173
container_title Journal of electronic materials
container_volume 49
creator Soares, Thiago
Cruz, Clarissa
Silva, Bismarck
Brito, Crystopher
Garcia, Amauri
Spinelli, José Eduardo
Cheung, Noé
description Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms affecting the heat transfer efficiency between this alloy and substrates of interest. Nickel (Ni) and copper (Cu) were tested since they are considered work piece materials of importance in electronic soldering. Moreover, low carbon steel was tested as a matter of comparison. For each tested case, wetting angles, integrity and nature of the interfaces and transient heat transfer coefficients, ‘ h ’, were determined. Even though the copper has a thermal conductivity greater than nickel, it is demonstrated that the occurrence of voids at the copper interface during alloy soldering may decrease the heat transfer efficiency, i.e., ‘ h ’. Oppositely, a more stable and less defective reaction layer was formed for the alloy/nickel couple. This is due to the suppression of the undesirable thermal contraction since the hexagonal Cu 6 Sn 5 intermetallics is stable at temperatures below 186°C in the presence of nickel.
doi_str_mv 10.1007/s11664-019-07454-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267285718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267285718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3367116aab869a401c10f7d21369d2fda5025c82bffe5fee7bcab4e59db9907c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK7-AU8Br2Y3SZukPUrxY2FBcFf0FtI00S7dtCbpoQf_u3UriBdPc5hn5uUdAC4JXhCMxTIQwnmKMMkRFilLET8CM8LSBJGMvx6DGU44QYwm7BSchbDDmDCSkRn4XLlofNeoAbYWvpgYVVk3dRyu4cGxSteqgU9G6Vi3DipX_TG278bvRy1aV_U6KqcNrB3cOIQXoujhpm0q4-FN07TDctOXIXoVzYj3XWPCOTixqgnm4kfn4Pnudls8oPXj_aq4WSOd0jyiJOFifFCpMuO5SjHRBFtRUZLwvKK2UgxTpjNaWmuYNUaUWpWpYXlV5jkWOpmDq6m38-1Hb0KUu7b3bjwpKeWCZkyQbKToRGnfhuCNlZ2v98oPkmD5PbOcZpbjzPIws-RjKJlCYYTdm_G_1f-kvgCxu4Fz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267285718</pqid></control><display><type>article</type><title>Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples</title><source>Springer Nature - Complete Springer Journals</source><creator>Soares, Thiago ; Cruz, Clarissa ; Silva, Bismarck ; Brito, Crystopher ; Garcia, Amauri ; Spinelli, José Eduardo ; Cheung, Noé</creator><creatorcontrib>Soares, Thiago ; Cruz, Clarissa ; Silva, Bismarck ; Brito, Crystopher ; Garcia, Amauri ; Spinelli, José Eduardo ; Cheung, Noé</creatorcontrib><description>Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms affecting the heat transfer efficiency between this alloy and substrates of interest. Nickel (Ni) and copper (Cu) were tested since they are considered work piece materials of importance in electronic soldering. Moreover, low carbon steel was tested as a matter of comparison. For each tested case, wetting angles, integrity and nature of the interfaces and transient heat transfer coefficients, ‘ h ’, were determined. Even though the copper has a thermal conductivity greater than nickel, it is demonstrated that the occurrence of voids at the copper interface during alloy soldering may decrease the heat transfer efficiency, i.e., ‘ h ’. Oppositely, a more stable and less defective reaction layer was formed for the alloy/nickel couple. This is due to the suppression of the undesirable thermal contraction since the hexagonal Cu 6 Sn 5 intermetallics is stable at temperatures below 186°C in the presence of nickel.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07454-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Directional solidification ; Electronics and Microelectronics ; Emerging Interconnection Technology ; Heat transfer ; Heat transfer coefficients ; Instrumentation ; Interconnect ; Interface reactions ; Intermetallic compounds ; Low carbon steels ; Materials Science ; Nickel ; Optical and Electronic Materials ; Pb-free Solder ; Soldering ; Solid State Physics ; Substrates ; Thermal conductivity ; Thermal contraction ; Tin base alloys ; TMS2019 Advanced Microelectronic Packaging ; TMS2019 Microelectronic Packaging ; Transient heat transfer ; Wettability ; Wetting ; Workpieces</subject><ispartof>Journal of electronic materials, 2020-01, Vol.49 (1), p.173-187</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3367116aab869a401c10f7d21369d2fda5025c82bffe5fee7bcab4e59db9907c3</citedby><cites>FETCH-LOGICAL-c429t-3367116aab869a401c10f7d21369d2fda5025c82bffe5fee7bcab4e59db9907c3</cites><orcidid>0000-0003-0611-1038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07454-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07454-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Soares, Thiago</creatorcontrib><creatorcontrib>Cruz, Clarissa</creatorcontrib><creatorcontrib>Silva, Bismarck</creatorcontrib><creatorcontrib>Brito, Crystopher</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Spinelli, José Eduardo</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><title>Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms affecting the heat transfer efficiency between this alloy and substrates of interest. Nickel (Ni) and copper (Cu) were tested since they are considered work piece materials of importance in electronic soldering. Moreover, low carbon steel was tested as a matter of comparison. For each tested case, wetting angles, integrity and nature of the interfaces and transient heat transfer coefficients, ‘ h ’, were determined. Even though the copper has a thermal conductivity greater than nickel, it is demonstrated that the occurrence of voids at the copper interface during alloy soldering may decrease the heat transfer efficiency, i.e., ‘ h ’. Oppositely, a more stable and less defective reaction layer was formed for the alloy/nickel couple. This is due to the suppression of the undesirable thermal contraction since the hexagonal Cu 6 Sn 5 intermetallics is stable at temperatures below 186°C in the presence of nickel.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Directional solidification</subject><subject>Electronics and Microelectronics</subject><subject>Emerging Interconnection Technology</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Instrumentation</subject><subject>Interconnect</subject><subject>Interface reactions</subject><subject>Intermetallic compounds</subject><subject>Low carbon steels</subject><subject>Materials Science</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Pb-free Solder</subject><subject>Soldering</subject><subject>Solid State Physics</subject><subject>Substrates</subject><subject>Thermal conductivity</subject><subject>Thermal contraction</subject><subject>Tin base alloys</subject><subject>TMS2019 Advanced Microelectronic Packaging</subject><subject>TMS2019 Microelectronic Packaging</subject><subject>Transient heat transfer</subject><subject>Wettability</subject><subject>Wetting</subject><subject>Workpieces</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAYhIMouK7-AU8Br2Y3SZukPUrxY2FBcFf0FtI00S7dtCbpoQf_u3UriBdPc5hn5uUdAC4JXhCMxTIQwnmKMMkRFilLET8CM8LSBJGMvx6DGU44QYwm7BSchbDDmDCSkRn4XLlofNeoAbYWvpgYVVk3dRyu4cGxSteqgU9G6Vi3DipX_TG278bvRy1aV_U6KqcNrB3cOIQXoujhpm0q4-FN07TDctOXIXoVzYj3XWPCOTixqgnm4kfn4Pnudls8oPXj_aq4WSOd0jyiJOFifFCpMuO5SjHRBFtRUZLwvKK2UgxTpjNaWmuYNUaUWpWpYXlV5jkWOpmDq6m38-1Hb0KUu7b3bjwpKeWCZkyQbKToRGnfhuCNlZ2v98oPkmD5PbOcZpbjzPIws-RjKJlCYYTdm_G_1f-kvgCxu4Fz</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Soares, Thiago</creator><creator>Cruz, Clarissa</creator><creator>Silva, Bismarck</creator><creator>Brito, Crystopher</creator><creator>Garcia, Amauri</creator><creator>Spinelli, José Eduardo</creator><creator>Cheung, Noé</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-0611-1038</orcidid></search><sort><creationdate>20200101</creationdate><title>Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples</title><author>Soares, Thiago ; Cruz, Clarissa ; Silva, Bismarck ; Brito, Crystopher ; Garcia, Amauri ; Spinelli, José Eduardo ; Cheung, Noé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3367116aab869a401c10f7d21369d2fda5025c82bffe5fee7bcab4e59db9907c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Directional solidification</topic><topic>Electronics and Microelectronics</topic><topic>Emerging Interconnection Technology</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Instrumentation</topic><topic>Interconnect</topic><topic>Interface reactions</topic><topic>Intermetallic compounds</topic><topic>Low carbon steels</topic><topic>Materials Science</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Pb-free Solder</topic><topic>Soldering</topic><topic>Solid State Physics</topic><topic>Substrates</topic><topic>Thermal conductivity</topic><topic>Thermal contraction</topic><topic>Tin base alloys</topic><topic>TMS2019 Advanced Microelectronic Packaging</topic><topic>TMS2019 Microelectronic Packaging</topic><topic>Transient heat transfer</topic><topic>Wettability</topic><topic>Wetting</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares, Thiago</creatorcontrib><creatorcontrib>Cruz, Clarissa</creatorcontrib><creatorcontrib>Silva, Bismarck</creatorcontrib><creatorcontrib>Brito, Crystopher</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Spinelli, José Eduardo</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soares, Thiago</au><au>Cruz, Clarissa</au><au>Silva, Bismarck</au><au>Brito, Crystopher</au><au>Garcia, Amauri</au><au>Spinelli, José Eduardo</au><au>Cheung, Noé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>173</spage><epage>187</epage><pages>173-187</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms affecting the heat transfer efficiency between this alloy and substrates of interest. Nickel (Ni) and copper (Cu) were tested since they are considered work piece materials of importance in electronic soldering. Moreover, low carbon steel was tested as a matter of comparison. For each tested case, wetting angles, integrity and nature of the interfaces and transient heat transfer coefficients, ‘ h ’, were determined. Even though the copper has a thermal conductivity greater than nickel, it is demonstrated that the occurrence of voids at the copper interface during alloy soldering may decrease the heat transfer efficiency, i.e., ‘ h ’. Oppositely, a more stable and less defective reaction layer was formed for the alloy/nickel couple. This is due to the suppression of the undesirable thermal contraction since the hexagonal Cu 6 Sn 5 intermetallics is stable at temperatures below 186°C in the presence of nickel.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07454-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0611-1038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020-01, Vol.49 (1), p.173-187
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2267285718
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Directional solidification
Electronics and Microelectronics
Emerging Interconnection Technology
Heat transfer
Heat transfer coefficients
Instrumentation
Interconnect
Interface reactions
Intermetallic compounds
Low carbon steels
Materials Science
Nickel
Optical and Electronic Materials
Pb-free Solder
Soldering
Solid State Physics
Substrates
Thermal conductivity
Thermal contraction
Tin base alloys
TMS2019 Advanced Microelectronic Packaging
TMS2019 Microelectronic Packaging
Transient heat transfer
Wettability
Wetting
Workpieces
title Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20Wettability,%20Interfacial%20Reaction%20and%20Interfacial%20Thermal%20Conductance%20in%20Sn-0.7Cu%20Solder%20Alloy/Substrate%20Couples&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Soares,%20Thiago&rft.date=2020-01-01&rft.volume=49&rft.issue=1&rft.spage=173&rft.epage=187&rft.pages=173-187&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07454-6&rft_dat=%3Cproquest_cross%3E2267285718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267285718&rft_id=info:pmid/&rfr_iscdi=true