Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples
Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2020-01, Vol.49 (1), p.173-187 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | 1 |
container_start_page | 173 |
container_title | Journal of electronic materials |
container_volume | 49 |
creator | Soares, Thiago Cruz, Clarissa Silva, Bismarck Brito, Crystopher Garcia, Amauri Spinelli, José Eduardo Cheung, Noé |
description | Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms affecting the heat transfer efficiency between this alloy and substrates of interest. Nickel (Ni) and copper (Cu) were tested since they are considered work piece materials of importance in electronic soldering. Moreover, low carbon steel was tested as a matter of comparison. For each tested case, wetting angles, integrity and nature of the interfaces and transient heat transfer coefficients, ‘
h
’, were determined. Even though the copper has a thermal conductivity greater than nickel, it is demonstrated that the occurrence of voids at the copper interface during alloy soldering may decrease the heat transfer efficiency, i.e., ‘
h
’. Oppositely, a more stable and less defective reaction layer was formed for the alloy/nickel couple. This is due to the suppression of the undesirable thermal contraction since the hexagonal Cu
6
Sn
5
intermetallics is stable at temperatures below 186°C in the presence of nickel. |
doi_str_mv | 10.1007/s11664-019-07454-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267285718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267285718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3367116aab869a401c10f7d21369d2fda5025c82bffe5fee7bcab4e59db9907c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK7-AU8Br2Y3SZukPUrxY2FBcFf0FtI00S7dtCbpoQf_u3UriBdPc5hn5uUdAC4JXhCMxTIQwnmKMMkRFilLET8CM8LSBJGMvx6DGU44QYwm7BSchbDDmDCSkRn4XLlofNeoAbYWvpgYVVk3dRyu4cGxSteqgU9G6Vi3DipX_TG278bvRy1aV_U6KqcNrB3cOIQXoujhpm0q4-FN07TDctOXIXoVzYj3XWPCOTixqgnm4kfn4Pnudls8oPXj_aq4WSOd0jyiJOFifFCpMuO5SjHRBFtRUZLwvKK2UgxTpjNaWmuYNUaUWpWpYXlV5jkWOpmDq6m38-1Hb0KUu7b3bjwpKeWCZkyQbKToRGnfhuCNlZ2v98oPkmD5PbOcZpbjzPIws-RjKJlCYYTdm_G_1f-kvgCxu4Fz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267285718</pqid></control><display><type>article</type><title>Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples</title><source>Springer Nature - Complete Springer Journals</source><creator>Soares, Thiago ; Cruz, Clarissa ; Silva, Bismarck ; Brito, Crystopher ; Garcia, Amauri ; Spinelli, José Eduardo ; Cheung, Noé</creator><creatorcontrib>Soares, Thiago ; Cruz, Clarissa ; Silva, Bismarck ; Brito, Crystopher ; Garcia, Amauri ; Spinelli, José Eduardo ; Cheung, Noé</creatorcontrib><description>Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms affecting the heat transfer efficiency between this alloy and substrates of interest. Nickel (Ni) and copper (Cu) were tested since they are considered work piece materials of importance in electronic soldering. Moreover, low carbon steel was tested as a matter of comparison. For each tested case, wetting angles, integrity and nature of the interfaces and transient heat transfer coefficients, ‘
h
’, were determined. Even though the copper has a thermal conductivity greater than nickel, it is demonstrated that the occurrence of voids at the copper interface during alloy soldering may decrease the heat transfer efficiency, i.e., ‘
h
’. Oppositely, a more stable and less defective reaction layer was formed for the alloy/nickel couple. This is due to the suppression of the undesirable thermal contraction since the hexagonal Cu
6
Sn
5
intermetallics is stable at temperatures below 186°C in the presence of nickel.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07454-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Directional solidification ; Electronics and Microelectronics ; Emerging Interconnection Technology ; Heat transfer ; Heat transfer coefficients ; Instrumentation ; Interconnect ; Interface reactions ; Intermetallic compounds ; Low carbon steels ; Materials Science ; Nickel ; Optical and Electronic Materials ; Pb-free Solder ; Soldering ; Solid State Physics ; Substrates ; Thermal conductivity ; Thermal contraction ; Tin base alloys ; TMS2019 Advanced Microelectronic Packaging ; TMS2019 Microelectronic Packaging ; Transient heat transfer ; Wettability ; Wetting ; Workpieces</subject><ispartof>Journal of electronic materials, 2020-01, Vol.49 (1), p.173-187</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3367116aab869a401c10f7d21369d2fda5025c82bffe5fee7bcab4e59db9907c3</citedby><cites>FETCH-LOGICAL-c429t-3367116aab869a401c10f7d21369d2fda5025c82bffe5fee7bcab4e59db9907c3</cites><orcidid>0000-0003-0611-1038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07454-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07454-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Soares, Thiago</creatorcontrib><creatorcontrib>Cruz, Clarissa</creatorcontrib><creatorcontrib>Silva, Bismarck</creatorcontrib><creatorcontrib>Brito, Crystopher</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Spinelli, José Eduardo</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><title>Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms affecting the heat transfer efficiency between this alloy and substrates of interest. Nickel (Ni) and copper (Cu) were tested since they are considered work piece materials of importance in electronic soldering. Moreover, low carbon steel was tested as a matter of comparison. For each tested case, wetting angles, integrity and nature of the interfaces and transient heat transfer coefficients, ‘
h
’, were determined. Even though the copper has a thermal conductivity greater than nickel, it is demonstrated that the occurrence of voids at the copper interface during alloy soldering may decrease the heat transfer efficiency, i.e., ‘
h
’. Oppositely, a more stable and less defective reaction layer was formed for the alloy/nickel couple. This is due to the suppression of the undesirable thermal contraction since the hexagonal Cu
6
Sn
5
intermetallics is stable at temperatures below 186°C in the presence of nickel.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Directional solidification</subject><subject>Electronics and Microelectronics</subject><subject>Emerging Interconnection Technology</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Instrumentation</subject><subject>Interconnect</subject><subject>Interface reactions</subject><subject>Intermetallic compounds</subject><subject>Low carbon steels</subject><subject>Materials Science</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Pb-free Solder</subject><subject>Soldering</subject><subject>Solid State Physics</subject><subject>Substrates</subject><subject>Thermal conductivity</subject><subject>Thermal contraction</subject><subject>Tin base alloys</subject><subject>TMS2019 Advanced Microelectronic Packaging</subject><subject>TMS2019 Microelectronic Packaging</subject><subject>Transient heat transfer</subject><subject>Wettability</subject><subject>Wetting</subject><subject>Workpieces</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAYhIMouK7-AU8Br2Y3SZukPUrxY2FBcFf0FtI00S7dtCbpoQf_u3UriBdPc5hn5uUdAC4JXhCMxTIQwnmKMMkRFilLET8CM8LSBJGMvx6DGU44QYwm7BSchbDDmDCSkRn4XLlofNeoAbYWvpgYVVk3dRyu4cGxSteqgU9G6Vi3DipX_TG278bvRy1aV_U6KqcNrB3cOIQXoujhpm0q4-FN07TDctOXIXoVzYj3XWPCOTixqgnm4kfn4Pnudls8oPXj_aq4WSOd0jyiJOFifFCpMuO5SjHRBFtRUZLwvKK2UgxTpjNaWmuYNUaUWpWpYXlV5jkWOpmDq6m38-1Hb0KUu7b3bjwpKeWCZkyQbKToRGnfhuCNlZ2v98oPkmD5PbOcZpbjzPIws-RjKJlCYYTdm_G_1f-kvgCxu4Fz</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Soares, Thiago</creator><creator>Cruz, Clarissa</creator><creator>Silva, Bismarck</creator><creator>Brito, Crystopher</creator><creator>Garcia, Amauri</creator><creator>Spinelli, José Eduardo</creator><creator>Cheung, Noé</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-0611-1038</orcidid></search><sort><creationdate>20200101</creationdate><title>Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples</title><author>Soares, Thiago ; Cruz, Clarissa ; Silva, Bismarck ; Brito, Crystopher ; Garcia, Amauri ; Spinelli, José Eduardo ; Cheung, Noé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3367116aab869a401c10f7d21369d2fda5025c82bffe5fee7bcab4e59db9907c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Directional solidification</topic><topic>Electronics and Microelectronics</topic><topic>Emerging Interconnection Technology</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Instrumentation</topic><topic>Interconnect</topic><topic>Interface reactions</topic><topic>Intermetallic compounds</topic><topic>Low carbon steels</topic><topic>Materials Science</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Pb-free Solder</topic><topic>Soldering</topic><topic>Solid State Physics</topic><topic>Substrates</topic><topic>Thermal conductivity</topic><topic>Thermal contraction</topic><topic>Tin base alloys</topic><topic>TMS2019 Advanced Microelectronic Packaging</topic><topic>TMS2019 Microelectronic Packaging</topic><topic>Transient heat transfer</topic><topic>Wettability</topic><topic>Wetting</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares, Thiago</creatorcontrib><creatorcontrib>Cruz, Clarissa</creatorcontrib><creatorcontrib>Silva, Bismarck</creatorcontrib><creatorcontrib>Brito, Crystopher</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Spinelli, José Eduardo</creatorcontrib><creatorcontrib>Cheung, Noé</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soares, Thiago</au><au>Cruz, Clarissa</au><au>Silva, Bismarck</au><au>Brito, Crystopher</au><au>Garcia, Amauri</au><au>Spinelli, José Eduardo</au><au>Cheung, Noé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>173</spage><epage>187</epage><pages>173-187</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Directional solidification experiments coupled with mathematical modelling, drop shape analyses and evaluation of the reaction layers were performed for three different types of joints produced with the Sn-0.7 wt.%Cu solder alloy. The association of such findings allowed understanding the mechanisms affecting the heat transfer efficiency between this alloy and substrates of interest. Nickel (Ni) and copper (Cu) were tested since they are considered work piece materials of importance in electronic soldering. Moreover, low carbon steel was tested as a matter of comparison. For each tested case, wetting angles, integrity and nature of the interfaces and transient heat transfer coefficients, ‘
h
’, were determined. Even though the copper has a thermal conductivity greater than nickel, it is demonstrated that the occurrence of voids at the copper interface during alloy soldering may decrease the heat transfer efficiency, i.e., ‘
h
’. Oppositely, a more stable and less defective reaction layer was formed for the alloy/nickel couple. This is due to the suppression of the undesirable thermal contraction since the hexagonal Cu
6
Sn
5
intermetallics is stable at temperatures below 186°C in the presence of nickel.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07454-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0611-1038</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2020-01, Vol.49 (1), p.173-187 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2267285718 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Copper Directional solidification Electronics and Microelectronics Emerging Interconnection Technology Heat transfer Heat transfer coefficients Instrumentation Interconnect Interface reactions Intermetallic compounds Low carbon steels Materials Science Nickel Optical and Electronic Materials Pb-free Solder Soldering Solid State Physics Substrates Thermal conductivity Thermal contraction Tin base alloys TMS2019 Advanced Microelectronic Packaging TMS2019 Microelectronic Packaging Transient heat transfer Wettability Wetting Workpieces |
title | Interplay of Wettability, Interfacial Reaction and Interfacial Thermal Conductance in Sn-0.7Cu Solder Alloy/Substrate Couples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20Wettability,%20Interfacial%20Reaction%20and%20Interfacial%20Thermal%20Conductance%20in%20Sn-0.7Cu%20Solder%20Alloy/Substrate%20Couples&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Soares,%20Thiago&rft.date=2020-01-01&rft.volume=49&rft.issue=1&rft.spage=173&rft.epage=187&rft.pages=173-187&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07454-6&rft_dat=%3Cproquest_cross%3E2267285718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267285718&rft_id=info:pmid/&rfr_iscdi=true |