Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies
The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2019-10, Vol.48 (10), p.6654-6660 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6660 |
---|---|
container_issue | 10 |
container_start_page | 6654 |
container_title | Journal of electronic materials |
container_volume | 48 |
creator | Razavi, Pedram Greer, James C. |
description | The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved. |
doi_str_mv | 10.1007/s11664-019-07476-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267280306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267280306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bec07392236df8ce5cca01dba3cc880aabdc4f32b731ad66a201bd33e25b4b3b3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzO8kmPdZSa6FUQQVvy36lpLSbupso_nujEbwJAzOH530HHkIuOVxzgOImcS5lxoBPGBRZIRkckRHPM2S8lK_HZAQoOcsF5qfkLKUtAM95yUdkvQzVrvPBetpU9KmLle7PR51S_a7bugm0n2Vwdben05h8qJ2nax2ajzp6equDowt9oPPg46b26ZycVHqX_MXvHpOXu_nz7J6tHhbL2XTFLEpsmfEWCpwIgdJVpfW5tRq4MxqtLUvQ2jibVShMgVw7KbUAbhyiF7nJDBock6uh9xCbt86nVm2bLob-pRJCFqIEBNlTYqBsbFKKvlKHWO91_FQc1Lc3NXhTvTf1401BH8IhlHo4bHz8q_4n9QUma3Cr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267280306</pqid></control><display><type>article</type><title>Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies</title><source>SpringerNature Journals</source><creator>Razavi, Pedram ; Greer, James C.</creator><creatorcontrib>Razavi, Pedram ; Greer, James C.</creatorcontrib><description>The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07476-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Arsenides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Density functional theory ; Electron affinity ; Electronics and Microelectronics ; Energy gap ; Field effect transistors ; First principles ; Indium arsenides ; Instrumentation ; Intermetallic compounds ; Materials Science ; Nanowires ; Optical and Electronic Materials ; Organic chemistry ; Quantum confinement ; Semiconductor devices ; Solid State Physics ; Surface chemistry</subject><ispartof>Journal of electronic materials, 2019-10, Vol.48 (10), p.6654-6660</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bec07392236df8ce5cca01dba3cc880aabdc4f32b731ad66a201bd33e25b4b3b3</citedby><cites>FETCH-LOGICAL-c363t-bec07392236df8ce5cca01dba3cc880aabdc4f32b731ad66a201bd33e25b4b3b3</cites><orcidid>0000-0002-9236-6565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07476-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07476-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Razavi, Pedram</creatorcontrib><creatorcontrib>Greer, James C.</creatorcontrib><title>Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.</description><subject>Approximation</subject><subject>Arsenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Electron affinity</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>First principles</subject><subject>Indium arsenides</subject><subject>Instrumentation</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Quantum confinement</subject><subject>Semiconductor devices</subject><subject>Solid State Physics</subject><subject>Surface chemistry</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzO8kmPdZSa6FUQQVvy36lpLSbupso_nujEbwJAzOH530HHkIuOVxzgOImcS5lxoBPGBRZIRkckRHPM2S8lK_HZAQoOcsF5qfkLKUtAM95yUdkvQzVrvPBetpU9KmLle7PR51S_a7bugm0n2Vwdben05h8qJ2nax2ajzp6equDowt9oPPg46b26ZycVHqX_MXvHpOXu_nz7J6tHhbL2XTFLEpsmfEWCpwIgdJVpfW5tRq4MxqtLUvQ2jibVShMgVw7KbUAbhyiF7nJDBock6uh9xCbt86nVm2bLob-pRJCFqIEBNlTYqBsbFKKvlKHWO91_FQc1Lc3NXhTvTf1401BH8IhlHo4bHz8q_4n9QUma3Cr</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Razavi, Pedram</creator><creator>Greer, James C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-9236-6565</orcidid></search><sort><creationdate>20191001</creationdate><title>Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies</title><author>Razavi, Pedram ; Greer, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bec07392236df8ce5cca01dba3cc880aabdc4f32b731ad66a201bd33e25b4b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Arsenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Electron affinity</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>First principles</topic><topic>Indium arsenides</topic><topic>Instrumentation</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Quantum confinement</topic><topic>Semiconductor devices</topic><topic>Solid State Physics</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razavi, Pedram</creatorcontrib><creatorcontrib>Greer, James C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razavi, Pedram</au><au>Greer, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>48</volume><issue>10</issue><spage>6654</spage><epage>6660</epage><pages>6654-6660</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07476-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9236-6565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2019-10, Vol.48 (10), p.6654-6660 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2267280306 |
source | SpringerNature Journals |
subjects | Approximation Arsenides Characterization and Evaluation of Materials Chemistry and Materials Science Density functional theory Electron affinity Electronics and Microelectronics Energy gap Field effect transistors First principles Indium arsenides Instrumentation Intermetallic compounds Materials Science Nanowires Optical and Electronic Materials Organic chemistry Quantum confinement Semiconductor devices Solid State Physics Surface chemistry |
title | Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Surface%20Passivation%20on%20Indium%20Arsenide%20Nanowire%20Band%20Gap%20Energies&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Razavi,%20Pedram&rft.date=2019-10-01&rft.volume=48&rft.issue=10&rft.spage=6654&rft.epage=6660&rft.pages=6654-6660&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07476-0&rft_dat=%3Cproquest_cross%3E2267280306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267280306&rft_id=info:pmid/&rfr_iscdi=true |