Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies

The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2019-10, Vol.48 (10), p.6654-6660
Hauptverfasser: Razavi, Pedram, Greer, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6660
container_issue 10
container_start_page 6654
container_title Journal of electronic materials
container_volume 48
creator Razavi, Pedram
Greer, James C.
description The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.
doi_str_mv 10.1007/s11664-019-07476-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2267280306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267280306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bec07392236df8ce5cca01dba3cc880aabdc4f32b731ad66a201bd33e25b4b3b3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzO8kmPdZSa6FUQQVvy36lpLSbupso_nujEbwJAzOH530HHkIuOVxzgOImcS5lxoBPGBRZIRkckRHPM2S8lK_HZAQoOcsF5qfkLKUtAM95yUdkvQzVrvPBetpU9KmLle7PR51S_a7bugm0n2Vwdben05h8qJ2nax2ajzp6equDowt9oPPg46b26ZycVHqX_MXvHpOXu_nz7J6tHhbL2XTFLEpsmfEWCpwIgdJVpfW5tRq4MxqtLUvQ2jibVShMgVw7KbUAbhyiF7nJDBock6uh9xCbt86nVm2bLob-pRJCFqIEBNlTYqBsbFKKvlKHWO91_FQc1Lc3NXhTvTf1401BH8IhlHo4bHz8q_4n9QUma3Cr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267280306</pqid></control><display><type>article</type><title>Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies</title><source>SpringerNature Journals</source><creator>Razavi, Pedram ; Greer, James C.</creator><creatorcontrib>Razavi, Pedram ; Greer, James C.</creatorcontrib><description>The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07476-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Arsenides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Density functional theory ; Electron affinity ; Electronics and Microelectronics ; Energy gap ; Field effect transistors ; First principles ; Indium arsenides ; Instrumentation ; Intermetallic compounds ; Materials Science ; Nanowires ; Optical and Electronic Materials ; Organic chemistry ; Quantum confinement ; Semiconductor devices ; Solid State Physics ; Surface chemistry</subject><ispartof>Journal of electronic materials, 2019-10, Vol.48 (10), p.6654-6660</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bec07392236df8ce5cca01dba3cc880aabdc4f32b731ad66a201bd33e25b4b3b3</citedby><cites>FETCH-LOGICAL-c363t-bec07392236df8ce5cca01dba3cc880aabdc4f32b731ad66a201bd33e25b4b3b3</cites><orcidid>0000-0002-9236-6565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07476-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07476-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Razavi, Pedram</creatorcontrib><creatorcontrib>Greer, James C.</creatorcontrib><title>Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.</description><subject>Approximation</subject><subject>Arsenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Electron affinity</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>First principles</subject><subject>Indium arsenides</subject><subject>Instrumentation</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Quantum confinement</subject><subject>Semiconductor devices</subject><subject>Solid State Physics</subject><subject>Surface chemistry</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzO8kmPdZSa6FUQQVvy36lpLSbupso_nujEbwJAzOH530HHkIuOVxzgOImcS5lxoBPGBRZIRkckRHPM2S8lK_HZAQoOcsF5qfkLKUtAM95yUdkvQzVrvPBetpU9KmLle7PR51S_a7bugm0n2Vwdben05h8qJ2nax2ajzp6equDowt9oPPg46b26ZycVHqX_MXvHpOXu_nz7J6tHhbL2XTFLEpsmfEWCpwIgdJVpfW5tRq4MxqtLUvQ2jibVShMgVw7KbUAbhyiF7nJDBock6uh9xCbt86nVm2bLob-pRJCFqIEBNlTYqBsbFKKvlKHWO91_FQc1Lc3NXhTvTf1401BH8IhlHo4bHz8q_4n9QUma3Cr</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Razavi, Pedram</creator><creator>Greer, James C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-9236-6565</orcidid></search><sort><creationdate>20191001</creationdate><title>Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies</title><author>Razavi, Pedram ; Greer, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bec07392236df8ce5cca01dba3cc880aabdc4f32b731ad66a201bd33e25b4b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Arsenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Electron affinity</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>First principles</topic><topic>Indium arsenides</topic><topic>Instrumentation</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Quantum confinement</topic><topic>Semiconductor devices</topic><topic>Solid State Physics</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razavi, Pedram</creatorcontrib><creatorcontrib>Greer, James C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razavi, Pedram</au><au>Greer, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>48</volume><issue>10</issue><spage>6654</spage><epage>6660</epage><pages>6654-6660</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07476-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9236-6565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2019-10, Vol.48 (10), p.6654-6660
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2267280306
source SpringerNature Journals
subjects Approximation
Arsenides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Density functional theory
Electron affinity
Electronics and Microelectronics
Energy gap
Field effect transistors
First principles
Indium arsenides
Instrumentation
Intermetallic compounds
Materials Science
Nanowires
Optical and Electronic Materials
Organic chemistry
Quantum confinement
Semiconductor devices
Solid State Physics
Surface chemistry
title Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Surface%20Passivation%20on%20Indium%20Arsenide%20Nanowire%20Band%20Gap%20Energies&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Razavi,%20Pedram&rft.date=2019-10-01&rft.volume=48&rft.issue=10&rft.spage=6654&rft.epage=6660&rft.pages=6654-6660&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07476-0&rft_dat=%3Cproquest_cross%3E2267280306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267280306&rft_id=info:pmid/&rfr_iscdi=true