Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia
Landslide susceptibility maps (LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression (LR) and an artificial neural network (ANN) to produce a LSM. The LSM is produced with 11 causative factors and then opti...
Gespeichert in:
Veröffentlicht in: | Journal of mountain science 2019-02, Vol.16 (2), p.383-401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 2 |
container_start_page | 383 |
container_title | Journal of mountain science |
container_volume | 16 |
creator | Soma, Andang Suryana Kubota, Tetsuya Mizuno, Hideaki |
description | Landslide susceptibility maps (LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression (LR) and an artificial neural network (ANN) to produce a LSM. The LSM is produced with 11 causative factors and then optimized using forward-stepwise LR (FSLR), ANN, and their combination (FSLR-ANN) until eight causative factors were found for each method. The ANN method produced superior validation results compared with LR. The ROC values for the training data set ranges between 0.8 and 0.9. On the other hand, validation with the percentage of landslide fall into LSM class high and very high, ANN method was higher (92.59%) than LR (82.12%). FSLR-ANN with nine causative factors gave the best validation results with respect to area under curve (AUC) values, and validation with the percentage of landslide fall into LSM class high and very high. In conclusion, ANN was found to be better than LR when producing LSMs. The best Optimization was combination of FSLR -ANN with nine causative factors and AUC success rate 0.847, predictive rate 0.844 and validation with landslide fall into high and very high class with 91.30%. It is an encouraging preliminary model towards a systematic introduction of FSLR-ANN model for optimization causative factors in landslide susceptibility assessment in the mountainous area of Ujung Loe Watershed. |
doi_str_mv | 10.1007/s11629-018-4884-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266404376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266404376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6305c3b9ed90a4798112c456a64f92bcb351f6e79ca7e7aab19df32c8b11df1b3</originalsourceid><addsrcrecordid>eNp1UU1v1DAQjRCVKC0_gNtIXAm1nawdH1EFpdJKPZSqR8txxlsvWXvxOFTln_Xf4WUrceI0b6T3oafXNO85-8QZUxfEuRS6ZXxo-2HoW_WqOeVady3rBH9dsVSilR2Xb5q3RFvGpNIDP22eb_Yl7MJvW0KKkDw4u1B9fiF460rKBAuFuIE5bQKV4CDjJiPRgW7jBDaX4IMLdoaIS_57ymPKP2CXJpwJfMowVybNYUKghRzWyDHMoTyBJapeO4wFQoS77VKT1gnh3hbM9IDTR7hNS3mA22W2j0gBruOUYgX2vDnxdiZ893LPmruvX75ffmvXN1fXl5_XrattS-3MVq4bNU6a2f5QmgvXr6SVvddidGO34l6i0s4qVNaOXE--E24YOZ88H7uz5sPRd5_TzwWpmG1acqyRRggpe9Z3SlYWP7JcTkQZvdnnsLP5yXBmDguZ40KmLmQOCxlVNeKoocqNG8z_nP8v-gMKWZnO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266404376</pqid></control><display><type>article</type><title>Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Soma, Andang Suryana ; Kubota, Tetsuya ; Mizuno, Hideaki</creator><creatorcontrib>Soma, Andang Suryana ; Kubota, Tetsuya ; Mizuno, Hideaki</creatorcontrib><description>Landslide susceptibility maps (LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression (LR) and an artificial neural network (ANN) to produce a LSM. The LSM is produced with 11 causative factors and then optimized using forward-stepwise LR (FSLR), ANN, and their combination (FSLR-ANN) until eight causative factors were found for each method. The ANN method produced superior validation results compared with LR. The ROC values for the training data set ranges between 0.8 and 0.9. On the other hand, validation with the percentage of landslide fall into LSM class high and very high, ANN method was higher (92.59%) than LR (82.12%). FSLR-ANN with nine causative factors gave the best validation results with respect to area under curve (AUC) values, and validation with the percentage of landslide fall into LSM class high and very high. In conclusion, ANN was found to be better than LR when producing LSMs. The best Optimization was combination of FSLR -ANN with nine causative factors and AUC success rate 0.847, predictive rate 0.844 and validation with landslide fall into high and very high class with 91.30%. It is an encouraging preliminary model towards a systematic introduction of FSLR-ANN model for optimization causative factors in landslide susceptibility assessment in the mountainous area of Ujung Loe Watershed.</description><identifier>ISSN: 1672-6316</identifier><identifier>EISSN: 1993-0321</identifier><identifier>EISSN: 1008-2786</identifier><identifier>DOI: 10.1007/s11629-018-4884-7</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Artificial neural networks ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Environment ; Geography ; Land use ; Land use management ; Land use planning ; Landslides ; Mitigation ; Mountain regions ; Neural networks ; Optimization ; Regression analysis ; Risk reduction ; Training ; Watersheds</subject><ispartof>Journal of mountain science, 2019-02, Vol.16 (2), p.383-401</ispartof><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6305c3b9ed90a4798112c456a64f92bcb351f6e79ca7e7aab19df32c8b11df1b3</citedby><cites>FETCH-LOGICAL-c316t-6305c3b9ed90a4798112c456a64f92bcb351f6e79ca7e7aab19df32c8b11df1b3</cites><orcidid>0000-0002-9252-9387 ; 0000-0002-7277-6129 ; 0000-0001-9233-278X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11629-018-4884-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11629-018-4884-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Soma, Andang Suryana</creatorcontrib><creatorcontrib>Kubota, Tetsuya</creatorcontrib><creatorcontrib>Mizuno, Hideaki</creatorcontrib><title>Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia</title><title>Journal of mountain science</title><addtitle>J. Mt. Sci</addtitle><description>Landslide susceptibility maps (LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression (LR) and an artificial neural network (ANN) to produce a LSM. The LSM is produced with 11 causative factors and then optimized using forward-stepwise LR (FSLR), ANN, and their combination (FSLR-ANN) until eight causative factors were found for each method. The ANN method produced superior validation results compared with LR. The ROC values for the training data set ranges between 0.8 and 0.9. On the other hand, validation with the percentage of landslide fall into LSM class high and very high, ANN method was higher (92.59%) than LR (82.12%). FSLR-ANN with nine causative factors gave the best validation results with respect to area under curve (AUC) values, and validation with the percentage of landslide fall into LSM class high and very high. In conclusion, ANN was found to be better than LR when producing LSMs. The best Optimization was combination of FSLR -ANN with nine causative factors and AUC success rate 0.847, predictive rate 0.844 and validation with landslide fall into high and very high class with 91.30%. It is an encouraging preliminary model towards a systematic introduction of FSLR-ANN model for optimization causative factors in landslide susceptibility assessment in the mountainous area of Ujung Loe Watershed.</description><subject>Artificial neural networks</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Environment</subject><subject>Geography</subject><subject>Land use</subject><subject>Land use management</subject><subject>Land use planning</subject><subject>Landslides</subject><subject>Mitigation</subject><subject>Mountain regions</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Regression analysis</subject><subject>Risk reduction</subject><subject>Training</subject><subject>Watersheds</subject><issn>1672-6316</issn><issn>1993-0321</issn><issn>1008-2786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UU1v1DAQjRCVKC0_gNtIXAm1nawdH1EFpdJKPZSqR8txxlsvWXvxOFTln_Xf4WUrceI0b6T3oafXNO85-8QZUxfEuRS6ZXxo-2HoW_WqOeVady3rBH9dsVSilR2Xb5q3RFvGpNIDP22eb_Yl7MJvW0KKkDw4u1B9fiF460rKBAuFuIE5bQKV4CDjJiPRgW7jBDaX4IMLdoaIS_57ymPKP2CXJpwJfMowVybNYUKghRzWyDHMoTyBJapeO4wFQoS77VKT1gnh3hbM9IDTR7hNS3mA22W2j0gBruOUYgX2vDnxdiZ893LPmruvX75ffmvXN1fXl5_XrattS-3MVq4bNU6a2f5QmgvXr6SVvddidGO34l6i0s4qVNaOXE--E24YOZ88H7uz5sPRd5_TzwWpmG1acqyRRggpe9Z3SlYWP7JcTkQZvdnnsLP5yXBmDguZ40KmLmQOCxlVNeKoocqNG8z_nP8v-gMKWZnO</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Soma, Andang Suryana</creator><creator>Kubota, Tetsuya</creator><creator>Mizuno, Hideaki</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9252-9387</orcidid><orcidid>https://orcid.org/0000-0002-7277-6129</orcidid><orcidid>https://orcid.org/0000-0001-9233-278X</orcidid></search><sort><creationdate>20190201</creationdate><title>Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia</title><author>Soma, Andang Suryana ; Kubota, Tetsuya ; Mizuno, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6305c3b9ed90a4798112c456a64f92bcb351f6e79ca7e7aab19df32c8b11df1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Environment</topic><topic>Geography</topic><topic>Land use</topic><topic>Land use management</topic><topic>Land use planning</topic><topic>Landslides</topic><topic>Mitigation</topic><topic>Mountain regions</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Regression analysis</topic><topic>Risk reduction</topic><topic>Training</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soma, Andang Suryana</creatorcontrib><creatorcontrib>Kubota, Tetsuya</creatorcontrib><creatorcontrib>Mizuno, Hideaki</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of mountain science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soma, Andang Suryana</au><au>Kubota, Tetsuya</au><au>Mizuno, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia</atitle><jtitle>Journal of mountain science</jtitle><stitle>J. Mt. Sci</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>383</spage><epage>401</epage><pages>383-401</pages><issn>1672-6316</issn><eissn>1993-0321</eissn><eissn>1008-2786</eissn><abstract>Landslide susceptibility maps (LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression (LR) and an artificial neural network (ANN) to produce a LSM. The LSM is produced with 11 causative factors and then optimized using forward-stepwise LR (FSLR), ANN, and their combination (FSLR-ANN) until eight causative factors were found for each method. The ANN method produced superior validation results compared with LR. The ROC values for the training data set ranges between 0.8 and 0.9. On the other hand, validation with the percentage of landslide fall into LSM class high and very high, ANN method was higher (92.59%) than LR (82.12%). FSLR-ANN with nine causative factors gave the best validation results with respect to area under curve (AUC) values, and validation with the percentage of landslide fall into LSM class high and very high. In conclusion, ANN was found to be better than LR when producing LSMs. The best Optimization was combination of FSLR -ANN with nine causative factors and AUC success rate 0.847, predictive rate 0.844 and validation with landslide fall into high and very high class with 91.30%. It is an encouraging preliminary model towards a systematic introduction of FSLR-ANN model for optimization causative factors in landslide susceptibility assessment in the mountainous area of Ujung Loe Watershed.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11629-018-4884-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9252-9387</orcidid><orcidid>https://orcid.org/0000-0002-7277-6129</orcidid><orcidid>https://orcid.org/0000-0001-9233-278X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-6316 |
ispartof | Journal of mountain science, 2019-02, Vol.16 (2), p.383-401 |
issn | 1672-6316 1993-0321 1008-2786 |
language | eng |
recordid | cdi_proquest_journals_2266404376 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Artificial neural networks Earth and Environmental Science Earth Sciences Ecology Environment Geography Land use Land use management Land use planning Landslides Mitigation Mountain regions Neural networks Optimization Regression analysis Risk reduction Training Watersheds |
title | Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20causative%20factors%20using%20logistic%20regression%20and%20artificial%20neural%20network%20models%20for%20landslide%20susceptibility%20assessment%20in%20Ujung%20Loe%20Watershed,%20South%20Sulawesi%20Indonesia&rft.jtitle=Journal%20of%20mountain%20science&rft.au=Soma,%20Andang%20Suryana&rft.date=2019-02-01&rft.volume=16&rft.issue=2&rft.spage=383&rft.epage=401&rft.pages=383-401&rft.issn=1672-6316&rft.eissn=1993-0321&rft_id=info:doi/10.1007/s11629-018-4884-7&rft_dat=%3Cproquest_cross%3E2266404376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266404376&rft_id=info:pmid/&rfr_iscdi=true |