Scale-Free Percolation in Continuum Space

The study of real-life network modeling has become very popular in recent years. An attractive model is the scale-free percolation model on the lattice Z d , d ≥ 1 , because it fulfills several stylized facts observed in large real-life networks. We adopt this model to continuum space which leads to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematics and statistics 2019-09, Vol.7 (3), p.269-308
Hauptverfasser: Deprez, Philippe, Wüthrich, Mario V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 3
container_start_page 269
container_title Communications in mathematics and statistics
container_volume 7
creator Deprez, Philippe
Wüthrich, Mario V.
description The study of real-life network modeling has become very popular in recent years. An attractive model is the scale-free percolation model on the lattice Z d , d ≥ 1 , because it fulfills several stylized facts observed in large real-life networks. We adopt this model to continuum space which leads to a heterogeneous random-connection model on R d : Particles are generated by a homogeneous marked Poisson point process on R d , and the probability of an edge between two particles is determined by their marks and their distance. In this model we study several properties such as the degree distributions, percolation properties and graph distances.
doi_str_mv 10.1007/s40304-018-0142-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266400350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266400350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bdd8c18dd885e95a609823c80b2f6e8ae0b138baa3f0a4b44ffd49f8a0e76fa63</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOIzzAO4KrlxETy5N06UUR4UBhVFwF9L0RDp02pq0C9_eloquXJzL4r_AR8glgxsGkN1GCQIkBaankZzCCVlxlkuqMvZ--vsDOyebGA8AwBTXWZ6uyPXe2QbpNiAmLxhc19ih7tqkbpOia4e6Hcdjsu-twwty5m0TcfNz1-Rte_9aPNLd88NTcbejTjA10LKqtGN62jrFPLUKcs2F01Byr1BbhJIJXVorPFhZSul9JXOvLWCmvFViTa6W3D50nyPGwRy6MbRTpeFcKQkgUphUbFG50MUY0Js-1EcbvgwDM0MxCxQzQTEzFDN7-OKJk7b9wPCX_L_pG5l9Ys4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266400350</pqid></control><display><type>article</type><title>Scale-Free Percolation in Continuum Space</title><source>SpringerLink Journals</source><creator>Deprez, Philippe ; Wüthrich, Mario V.</creator><creatorcontrib>Deprez, Philippe ; Wüthrich, Mario V.</creatorcontrib><description>The study of real-life network modeling has become very popular in recent years. An attractive model is the scale-free percolation model on the lattice Z d , d ≥ 1 , because it fulfills several stylized facts observed in large real-life networks. We adopt this model to continuum space which leads to a heterogeneous random-connection model on R d : Particles are generated by a homogeneous marked Poisson point process on R d , and the probability of an edge between two particles is determined by their marks and their distance. In this model we study several properties such as the degree distributions, percolation properties and graph distances.</description><identifier>ISSN: 2194-6701</identifier><identifier>EISSN: 2194-671X</identifier><identifier>DOI: 10.1007/s40304-018-0142-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics ; Percolation ; Statistics</subject><ispartof>Communications in mathematics and statistics, 2019-09, Vol.7 (3), p.269-308</ispartof><rights>School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bdd8c18dd885e95a609823c80b2f6e8ae0b138baa3f0a4b44ffd49f8a0e76fa63</citedby><cites>FETCH-LOGICAL-c316t-bdd8c18dd885e95a609823c80b2f6e8ae0b138baa3f0a4b44ffd49f8a0e76fa63</cites><orcidid>0000-0003-0813-0603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40304-018-0142-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40304-018-0142-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Deprez, Philippe</creatorcontrib><creatorcontrib>Wüthrich, Mario V.</creatorcontrib><title>Scale-Free Percolation in Continuum Space</title><title>Communications in mathematics and statistics</title><addtitle>Commun. Math. Stat</addtitle><description>The study of real-life network modeling has become very popular in recent years. An attractive model is the scale-free percolation model on the lattice Z d , d ≥ 1 , because it fulfills several stylized facts observed in large real-life networks. We adopt this model to continuum space which leads to a heterogeneous random-connection model on R d : Particles are generated by a homogeneous marked Poisson point process on R d , and the probability of an edge between two particles is determined by their marks and their distance. In this model we study several properties such as the degree distributions, percolation properties and graph distances.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Percolation</subject><subject>Statistics</subject><issn>2194-6701</issn><issn>2194-671X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOIzzAO4KrlxETy5N06UUR4UBhVFwF9L0RDp02pq0C9_eloquXJzL4r_AR8glgxsGkN1GCQIkBaankZzCCVlxlkuqMvZ--vsDOyebGA8AwBTXWZ6uyPXe2QbpNiAmLxhc19ih7tqkbpOia4e6Hcdjsu-twwty5m0TcfNz1-Rte_9aPNLd88NTcbejTjA10LKqtGN62jrFPLUKcs2F01Byr1BbhJIJXVorPFhZSul9JXOvLWCmvFViTa6W3D50nyPGwRy6MbRTpeFcKQkgUphUbFG50MUY0Js-1EcbvgwDM0MxCxQzQTEzFDN7-OKJk7b9wPCX_L_pG5l9Ys4</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Deprez, Philippe</creator><creator>Wüthrich, Mario V.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0813-0603</orcidid></search><sort><creationdate>20190901</creationdate><title>Scale-Free Percolation in Continuum Space</title><author>Deprez, Philippe ; Wüthrich, Mario V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bdd8c18dd885e95a609823c80b2f6e8ae0b138baa3f0a4b44ffd49f8a0e76fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Percolation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deprez, Philippe</creatorcontrib><creatorcontrib>Wüthrich, Mario V.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematics and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deprez, Philippe</au><au>Wüthrich, Mario V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scale-Free Percolation in Continuum Space</atitle><jtitle>Communications in mathematics and statistics</jtitle><stitle>Commun. Math. Stat</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>7</volume><issue>3</issue><spage>269</spage><epage>308</epage><pages>269-308</pages><issn>2194-6701</issn><eissn>2194-671X</eissn><abstract>The study of real-life network modeling has become very popular in recent years. An attractive model is the scale-free percolation model on the lattice Z d , d ≥ 1 , because it fulfills several stylized facts observed in large real-life networks. We adopt this model to continuum space which leads to a heterogeneous random-connection model on R d : Particles are generated by a homogeneous marked Poisson point process on R d , and the probability of an edge between two particles is determined by their marks and their distance. In this model we study several properties such as the degree distributions, percolation properties and graph distances.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40304-018-0142-0</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-0813-0603</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-6701
ispartof Communications in mathematics and statistics, 2019-09, Vol.7 (3), p.269-308
issn 2194-6701
2194-671X
language eng
recordid cdi_proquest_journals_2266400350
source SpringerLink Journals
subjects Mathematics
Mathematics and Statistics
Percolation
Statistics
title Scale-Free Percolation in Continuum Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scale-Free%20Percolation%20in%20Continuum%20Space&rft.jtitle=Communications%20in%20mathematics%20and%20statistics&rft.au=Deprez,%20Philippe&rft.date=2019-09-01&rft.volume=7&rft.issue=3&rft.spage=269&rft.epage=308&rft.pages=269-308&rft.issn=2194-6701&rft.eissn=2194-671X&rft_id=info:doi/10.1007/s40304-018-0142-0&rft_dat=%3Cproquest_cross%3E2266400350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266400350&rft_id=info:pmid/&rfr_iscdi=true