Strain Engineering of the Berry Curvature Dipole and Valley Magnetization in Monolayer MoS2

The Berry curvature dipole is a physical quantity that is expected to allow various quantum geometrical phenomena in a range of solid-state systems. Monolayer transition metal dichalcogenides provide an exceptional platform to modulate and investigate the Berry curvature dipole through strain. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-07, Vol.123 (3), p.1
Hauptverfasser: Son, Joolee, Kim, Kyung-Han, Ahn, Y H, Lee, Hyun-Woo, Lee, Jieun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1
container_title Physical review letters
container_volume 123
creator Son, Joolee
Kim, Kyung-Han
Ahn, Y H
Lee, Hyun-Woo
Lee, Jieun
description The Berry curvature dipole is a physical quantity that is expected to allow various quantum geometrical phenomena in a range of solid-state systems. Monolayer transition metal dichalcogenides provide an exceptional platform to modulate and investigate the Berry curvature dipole through strain. Here, we theoretically demonstrate and experimentally verify for monolayer MoS2 the generation of valley orbital magnetization as a response to an in-plane electric field due to the Berry curvature dipole. The measured valley orbital magnetization shows excellent agreement with the calculated Berry curvature dipole, which can be controlled by the magnitude and direction of strain. Our results show that the Berry curvature dipole acts as an effective magnetic field in current-carrying systems, providing a novel route to generate magnetization.
doi_str_mv 10.1103/PhysRevLett.123.036806
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2266338316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266338316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-48a7436e17ce74299eb7369c064628eb1f9358463c25b6c59da47b428cbe4f3e3</originalsourceid><addsrcrecordid>eNotjU9LwzAcQIMoWKdfQQKeO5P8svw56txU2FCcevEw0u7XrqMkM00H9dM70NN7p_cIueZszDmD29ft0L3hYYEpjbmAMQNlmDohGWfa5ppzeUoyxoDnljF9Ti66bscY40KZjHytUnSNpzNfNx4xNr6moaJpi_QeYxzotI8Hl_qI9KHZhxap8xv66doWB7p0tcfU_LjUBE-PlWXwoXUDxqOtxCU5q1zb4dU_R-RjPnufPuWLl8fn6d0iLwWolEvjtASFXJeopbAWCw3KlkxJJQwWvLIwMVJBKSaFKid246QupDBlgbIChBG5-evuY_jusUvrXeijPy7XQigFYIAr-AXd3VdK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266338316</pqid></control><display><type>article</type><title>Strain Engineering of the Berry Curvature Dipole and Valley Magnetization in Monolayer MoS2</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Son, Joolee ; Kim, Kyung-Han ; Ahn, Y H ; Lee, Hyun-Woo ; Lee, Jieun</creator><creatorcontrib>Son, Joolee ; Kim, Kyung-Han ; Ahn, Y H ; Lee, Hyun-Woo ; Lee, Jieun</creatorcontrib><description>The Berry curvature dipole is a physical quantity that is expected to allow various quantum geometrical phenomena in a range of solid-state systems. Monolayer transition metal dichalcogenides provide an exceptional platform to modulate and investigate the Berry curvature dipole through strain. Here, we theoretically demonstrate and experimentally verify for monolayer MoS2 the generation of valley orbital magnetization as a response to an in-plane electric field due to the Berry curvature dipole. The measured valley orbital magnetization shows excellent agreement with the calculated Berry curvature dipole, which can be controlled by the magnitude and direction of strain. Our results show that the Berry curvature dipole acts as an effective magnetic field in current-carrying systems, providing a novel route to generate magnetization.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.036806</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Curvature ; Dipoles ; Electric fields ; Magnetization ; Molybdenum disulfide ; Monolayers ; System effectiveness ; Transition metal compounds</subject><ispartof>Physical review letters, 2019-07, Vol.123 (3), p.1</ispartof><rights>Copyright American Physical Society Jul 19, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236t-48a7436e17ce74299eb7369c064628eb1f9358463c25b6c59da47b428cbe4f3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Son, Joolee</creatorcontrib><creatorcontrib>Kim, Kyung-Han</creatorcontrib><creatorcontrib>Ahn, Y H</creatorcontrib><creatorcontrib>Lee, Hyun-Woo</creatorcontrib><creatorcontrib>Lee, Jieun</creatorcontrib><title>Strain Engineering of the Berry Curvature Dipole and Valley Magnetization in Monolayer MoS2</title><title>Physical review letters</title><description>The Berry curvature dipole is a physical quantity that is expected to allow various quantum geometrical phenomena in a range of solid-state systems. Monolayer transition metal dichalcogenides provide an exceptional platform to modulate and investigate the Berry curvature dipole through strain. Here, we theoretically demonstrate and experimentally verify for monolayer MoS2 the generation of valley orbital magnetization as a response to an in-plane electric field due to the Berry curvature dipole. The measured valley orbital magnetization shows excellent agreement with the calculated Berry curvature dipole, which can be controlled by the magnitude and direction of strain. Our results show that the Berry curvature dipole acts as an effective magnetic field in current-carrying systems, providing a novel route to generate magnetization.</description><subject>Curvature</subject><subject>Dipoles</subject><subject>Electric fields</subject><subject>Magnetization</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>System effectiveness</subject><subject>Transition metal compounds</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotjU9LwzAcQIMoWKdfQQKeO5P8svw56txU2FCcevEw0u7XrqMkM00H9dM70NN7p_cIueZszDmD29ft0L3hYYEpjbmAMQNlmDohGWfa5ppzeUoyxoDnljF9Ti66bscY40KZjHytUnSNpzNfNx4xNr6moaJpi_QeYxzotI8Hl_qI9KHZhxap8xv66doWB7p0tcfU_LjUBE-PlWXwoXUDxqOtxCU5q1zb4dU_R-RjPnufPuWLl8fn6d0iLwWolEvjtASFXJeopbAWCw3KlkxJJQwWvLIwMVJBKSaFKid246QupDBlgbIChBG5-evuY_jusUvrXeijPy7XQigFYIAr-AXd3VdK</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Son, Joolee</creator><creator>Kim, Kyung-Han</creator><creator>Ahn, Y H</creator><creator>Lee, Hyun-Woo</creator><creator>Lee, Jieun</creator><general>American Physical Society</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190718</creationdate><title>Strain Engineering of the Berry Curvature Dipole and Valley Magnetization in Monolayer MoS2</title><author>Son, Joolee ; Kim, Kyung-Han ; Ahn, Y H ; Lee, Hyun-Woo ; Lee, Jieun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-48a7436e17ce74299eb7369c064628eb1f9358463c25b6c59da47b428cbe4f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Curvature</topic><topic>Dipoles</topic><topic>Electric fields</topic><topic>Magnetization</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>System effectiveness</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Joolee</creatorcontrib><creatorcontrib>Kim, Kyung-Han</creatorcontrib><creatorcontrib>Ahn, Y H</creatorcontrib><creatorcontrib>Lee, Hyun-Woo</creatorcontrib><creatorcontrib>Lee, Jieun</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Joolee</au><au>Kim, Kyung-Han</au><au>Ahn, Y H</au><au>Lee, Hyun-Woo</au><au>Lee, Jieun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Engineering of the Berry Curvature Dipole and Valley Magnetization in Monolayer MoS2</atitle><jtitle>Physical review letters</jtitle><date>2019-07-18</date><risdate>2019</risdate><volume>123</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The Berry curvature dipole is a physical quantity that is expected to allow various quantum geometrical phenomena in a range of solid-state systems. Monolayer transition metal dichalcogenides provide an exceptional platform to modulate and investigate the Berry curvature dipole through strain. Here, we theoretically demonstrate and experimentally verify for monolayer MoS2 the generation of valley orbital magnetization as a response to an in-plane electric field due to the Berry curvature dipole. The measured valley orbital magnetization shows excellent agreement with the calculated Berry curvature dipole, which can be controlled by the magnitude and direction of strain. Our results show that the Berry curvature dipole acts as an effective magnetic field in current-carrying systems, providing a novel route to generate magnetization.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.123.036806</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-07, Vol.123 (3), p.1
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_journals_2266338316
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Curvature
Dipoles
Electric fields
Magnetization
Molybdenum disulfide
Monolayers
System effectiveness
Transition metal compounds
title Strain Engineering of the Berry Curvature Dipole and Valley Magnetization in Monolayer MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Engineering%20of%20the%20Berry%20Curvature%20Dipole%20and%20Valley%20Magnetization%20in%20Monolayer%20MoS2&rft.jtitle=Physical%20review%20letters&rft.au=Son,%20Joolee&rft.date=2019-07-18&rft.volume=123&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.036806&rft_dat=%3Cproquest%3E2266338316%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266338316&rft_id=info:pmid/&rfr_iscdi=true