Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries

Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (3), p.181-1818
Hauptverfasser: Xu, Jie, Bi, Shiming, Tang, Weiqiang, Kang, Qi, Niu, Dongfang, Hu, Shuozhen, Zhao, Shuangliang, Wang, Limin, Xin, Zhong, Zhang, Xinsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1818
container_issue 3
container_start_page 181
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Xu, Jie
Bi, Shiming
Tang, Weiqiang
Kang, Qi
Niu, Dongfang
Hu, Shuozhen
Zhao, Shuangliang
Wang, Limin
Xin, Zhong
Zhang, Xinsheng
description Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating nature of sulfur and their discharge products severely restrict the development of high-energy density Li-S batteries. Herein, a porous organic framework containing diketopyrrolopyrrole (DPP) building blocks is reasonably designed and it serves as a shuttle-inhibiting layer to bifunctionally increase the physical and chemical trapping of lithium polysulfides. The frameworks were synthesized through a bottom-up approach, allowing precise control of the network design at the molecular level. As a result, the framework-derived microscale networks with polar units effectively hinder the shuttle effect of polysulfides and promise excellent electrochemical performances with regard to improving kinetics and long-term cycling stability of Li-S batteries. DFT calculations demonstrate the charge transfer (CT) behavior and favorable binding energy between the DPP units and lithium polysulfides. This work not only provides a novel strategy to fabricate a bifunctional modified separator for high-performance Li-S batteries, but also inspires us to further develop advanced materials for emerging energy storage applications. The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li-S batteries with high rate, high sulfur content and high capacity retention.
doi_str_mv 10.1039/c9ta05996b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266297883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266297883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a14414f931977b7911573ccf1fa7cea2dcc810ed9551d96dad6d7a015af65383</originalsourceid><addsrcrecordid>eNpFkc1Lw0AQxYMoWLQX78KCNyG6mzQfe6z1Ewpeeg-T3dl22zQbZxNq_hD_X1Nb6lzeY_jxBt4EwY3gD4LH8lHJFngiZVqeBaOIJzzMJjI9P_k8vwzG3q_5MDnnqZSj4Oe5ayr8Zi1B09h6yaDWTK2Alrjf1d4gsZ1tV6xxVe-7yliNnpU9A6btBlvX9ESuOgqGJXjUzNESaquYIdjiztGGGUdsZZersEEa_BZqhawagm23Dfe5HbES2hbJor8OLgxUHsdHvQoWry-L2Xs4_3z7mE3noYoT2YYgJhMxMTIWMsvKTAqRZLFSRhjIFEKklcoFRy2TRGiZatCpzoCLBEyaxHl8FdwdYhtyXx36tli7jurhYhFFaRrJLM_jgbo_UIqc94SmaMhugfpC8GJffDGTi-lf8U8DfHuAyasT9_-Y-BeEBYRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266297883</pqid></control><display><type>article</type><title>Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xu, Jie ; Bi, Shiming ; Tang, Weiqiang ; Kang, Qi ; Niu, Dongfang ; Hu, Shuozhen ; Zhao, Shuangliang ; Wang, Limin ; Xin, Zhong ; Zhang, Xinsheng</creator><creatorcontrib>Xu, Jie ; Bi, Shiming ; Tang, Weiqiang ; Kang, Qi ; Niu, Dongfang ; Hu, Shuozhen ; Zhao, Shuangliang ; Wang, Limin ; Xin, Zhong ; Zhang, Xinsheng</creatorcontrib><description>Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating nature of sulfur and their discharge products severely restrict the development of high-energy density Li-S batteries. Herein, a porous organic framework containing diketopyrrolopyrrole (DPP) building blocks is reasonably designed and it serves as a shuttle-inhibiting layer to bifunctionally increase the physical and chemical trapping of lithium polysulfides. The frameworks were synthesized through a bottom-up approach, allowing precise control of the network design at the molecular level. As a result, the framework-derived microscale networks with polar units effectively hinder the shuttle effect of polysulfides and promise excellent electrochemical performances with regard to improving kinetics and long-term cycling stability of Li-S batteries. DFT calculations demonstrate the charge transfer (CT) behavior and favorable binding energy between the DPP units and lithium polysulfides. This work not only provides a novel strategy to fabricate a bifunctional modified separator for high-performance Li-S batteries, but also inspires us to further develop advanced materials for emerging energy storage applications. The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li-S batteries with high rate, high sulfur content and high capacity retention.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta05996b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transfer ; Electrochemistry ; Energy storage ; Flux density ; Kinetics ; Lithium ; Lithium sulfur batteries ; Nonaqueous electrolytes ; Organic chemistry ; Polysulfides ; Separators ; Storage systems ; Sulfur ; Trapping</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.181-1818</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a14414f931977b7911573ccf1fa7cea2dcc810ed9551d96dad6d7a015af65383</citedby><cites>FETCH-LOGICAL-c359t-a14414f931977b7911573ccf1fa7cea2dcc810ed9551d96dad6d7a015af65383</cites><orcidid>0000-0003-0569-6281 ; 0000-0003-3979-4146 ; 0000-0002-7726-4130 ; 0000-0002-4025-5361 ; 0000-0002-9547-4860 ; 0000-0002-7299-6762 ; 0000-0002-6542-2699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Bi, Shiming</creatorcontrib><creatorcontrib>Tang, Weiqiang</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><creatorcontrib>Niu, Dongfang</creatorcontrib><creatorcontrib>Hu, Shuozhen</creatorcontrib><creatorcontrib>Zhao, Shuangliang</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Xin, Zhong</creatorcontrib><creatorcontrib>Zhang, Xinsheng</creatorcontrib><title>Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating nature of sulfur and their discharge products severely restrict the development of high-energy density Li-S batteries. Herein, a porous organic framework containing diketopyrrolopyrrole (DPP) building blocks is reasonably designed and it serves as a shuttle-inhibiting layer to bifunctionally increase the physical and chemical trapping of lithium polysulfides. The frameworks were synthesized through a bottom-up approach, allowing precise control of the network design at the molecular level. As a result, the framework-derived microscale networks with polar units effectively hinder the shuttle effect of polysulfides and promise excellent electrochemical performances with regard to improving kinetics and long-term cycling stability of Li-S batteries. DFT calculations demonstrate the charge transfer (CT) behavior and favorable binding energy between the DPP units and lithium polysulfides. This work not only provides a novel strategy to fabricate a bifunctional modified separator for high-performance Li-S batteries, but also inspires us to further develop advanced materials for emerging energy storage applications. The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li-S batteries with high rate, high sulfur content and high capacity retention.</description><subject>Charge transfer</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Nonaqueous electrolytes</subject><subject>Organic chemistry</subject><subject>Polysulfides</subject><subject>Separators</subject><subject>Storage systems</subject><subject>Sulfur</subject><subject>Trapping</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkc1Lw0AQxYMoWLQX78KCNyG6mzQfe6z1Ewpeeg-T3dl22zQbZxNq_hD_X1Nb6lzeY_jxBt4EwY3gD4LH8lHJFngiZVqeBaOIJzzMJjI9P_k8vwzG3q_5MDnnqZSj4Oe5ayr8Zi1B09h6yaDWTK2Alrjf1d4gsZ1tV6xxVe-7yliNnpU9A6btBlvX9ESuOgqGJXjUzNESaquYIdjiztGGGUdsZZersEEa_BZqhawagm23Dfe5HbES2hbJor8OLgxUHsdHvQoWry-L2Xs4_3z7mE3noYoT2YYgJhMxMTIWMsvKTAqRZLFSRhjIFEKklcoFRy2TRGiZatCpzoCLBEyaxHl8FdwdYhtyXx36tli7jurhYhFFaRrJLM_jgbo_UIqc94SmaMhugfpC8GJffDGTi-lf8U8DfHuAyasT9_-Y-BeEBYRM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xu, Jie</creator><creator>Bi, Shiming</creator><creator>Tang, Weiqiang</creator><creator>Kang, Qi</creator><creator>Niu, Dongfang</creator><creator>Hu, Shuozhen</creator><creator>Zhao, Shuangliang</creator><creator>Wang, Limin</creator><creator>Xin, Zhong</creator><creator>Zhang, Xinsheng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0569-6281</orcidid><orcidid>https://orcid.org/0000-0003-3979-4146</orcidid><orcidid>https://orcid.org/0000-0002-7726-4130</orcidid><orcidid>https://orcid.org/0000-0002-4025-5361</orcidid><orcidid>https://orcid.org/0000-0002-9547-4860</orcidid><orcidid>https://orcid.org/0000-0002-7299-6762</orcidid><orcidid>https://orcid.org/0000-0002-6542-2699</orcidid></search><sort><creationdate>2019</creationdate><title>Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries</title><author>Xu, Jie ; Bi, Shiming ; Tang, Weiqiang ; Kang, Qi ; Niu, Dongfang ; Hu, Shuozhen ; Zhao, Shuangliang ; Wang, Limin ; Xin, Zhong ; Zhang, Xinsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a14414f931977b7911573ccf1fa7cea2dcc810ed9551d96dad6d7a015af65383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transfer</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Nonaqueous electrolytes</topic><topic>Organic chemistry</topic><topic>Polysulfides</topic><topic>Separators</topic><topic>Storage systems</topic><topic>Sulfur</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Bi, Shiming</creatorcontrib><creatorcontrib>Tang, Weiqiang</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><creatorcontrib>Niu, Dongfang</creatorcontrib><creatorcontrib>Hu, Shuozhen</creatorcontrib><creatorcontrib>Zhao, Shuangliang</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Xin, Zhong</creatorcontrib><creatorcontrib>Zhang, Xinsheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jie</au><au>Bi, Shiming</au><au>Tang, Weiqiang</au><au>Kang, Qi</au><au>Niu, Dongfang</au><au>Hu, Shuozhen</au><au>Zhao, Shuangliang</au><au>Wang, Limin</au><au>Xin, Zhong</au><au>Zhang, Xinsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>3</issue><spage>181</spage><epage>1818</epage><pages>181-1818</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating nature of sulfur and their discharge products severely restrict the development of high-energy density Li-S batteries. Herein, a porous organic framework containing diketopyrrolopyrrole (DPP) building blocks is reasonably designed and it serves as a shuttle-inhibiting layer to bifunctionally increase the physical and chemical trapping of lithium polysulfides. The frameworks were synthesized through a bottom-up approach, allowing precise control of the network design at the molecular level. As a result, the framework-derived microscale networks with polar units effectively hinder the shuttle effect of polysulfides and promise excellent electrochemical performances with regard to improving kinetics and long-term cycling stability of Li-S batteries. DFT calculations demonstrate the charge transfer (CT) behavior and favorable binding energy between the DPP units and lithium polysulfides. This work not only provides a novel strategy to fabricate a bifunctional modified separator for high-performance Li-S batteries, but also inspires us to further develop advanced materials for emerging energy storage applications. The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li-S batteries with high rate, high sulfur content and high capacity retention.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta05996b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0569-6281</orcidid><orcidid>https://orcid.org/0000-0003-3979-4146</orcidid><orcidid>https://orcid.org/0000-0002-7726-4130</orcidid><orcidid>https://orcid.org/0000-0002-4025-5361</orcidid><orcidid>https://orcid.org/0000-0002-9547-4860</orcidid><orcidid>https://orcid.org/0000-0002-7299-6762</orcidid><orcidid>https://orcid.org/0000-0002-6542-2699</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.181-1818
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2266297883
source Royal Society Of Chemistry Journals 2008-
subjects Charge transfer
Electrochemistry
Energy storage
Flux density
Kinetics
Lithium
Lithium sulfur batteries
Nonaqueous electrolytes
Organic chemistry
Polysulfides
Separators
Storage systems
Sulfur
Trapping
title Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duplex%20trapping%20and%20charge%20transfer%20with%20polysulfides%20by%20a%20diketopyrrolopyrrole-based%20organic%20framework%20for%20high-performance%20lithium-sulfur%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xu,%20Jie&rft.date=2019&rft.volume=7&rft.issue=3&rft.spage=181&rft.epage=1818&rft.pages=181-1818&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta05996b&rft_dat=%3Cproquest_cross%3E2266297883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266297883&rft_id=info:pmid/&rfr_iscdi=true