Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries
Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (3), p.181-1818 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1818 |
---|---|
container_issue | 3 |
container_start_page | 181 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Xu, Jie Bi, Shiming Tang, Weiqiang Kang, Qi Niu, Dongfang Hu, Shuozhen Zhao, Shuangliang Wang, Limin Xin, Zhong Zhang, Xinsheng |
description | Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating nature of sulfur and their discharge products severely restrict the development of high-energy density Li-S batteries. Herein, a porous organic framework containing diketopyrrolopyrrole (DPP) building blocks is reasonably designed and it serves as a shuttle-inhibiting layer to bifunctionally increase the physical and chemical trapping of lithium polysulfides. The frameworks were synthesized through a bottom-up approach, allowing precise control of the network design at the molecular level. As a result, the framework-derived microscale networks with polar units effectively hinder the shuttle effect of polysulfides and promise excellent electrochemical performances with regard to improving kinetics and long-term cycling stability of Li-S batteries. DFT calculations demonstrate the charge transfer (CT) behavior and favorable binding energy between the DPP units and lithium polysulfides. This work not only provides a novel strategy to fabricate a bifunctional modified separator for high-performance Li-S batteries, but also inspires us to further develop advanced materials for emerging energy storage applications.
The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li-S batteries with high rate, high sulfur content and high capacity retention. |
doi_str_mv | 10.1039/c9ta05996b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266297883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266297883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a14414f931977b7911573ccf1fa7cea2dcc810ed9551d96dad6d7a015af65383</originalsourceid><addsrcrecordid>eNpFkc1Lw0AQxYMoWLQX78KCNyG6mzQfe6z1Ewpeeg-T3dl22zQbZxNq_hD_X1Nb6lzeY_jxBt4EwY3gD4LH8lHJFngiZVqeBaOIJzzMJjI9P_k8vwzG3q_5MDnnqZSj4Oe5ayr8Zi1B09h6yaDWTK2Alrjf1d4gsZ1tV6xxVe-7yliNnpU9A6btBlvX9ESuOgqGJXjUzNESaquYIdjiztGGGUdsZZersEEa_BZqhawagm23Dfe5HbES2hbJor8OLgxUHsdHvQoWry-L2Xs4_3z7mE3noYoT2YYgJhMxMTIWMsvKTAqRZLFSRhjIFEKklcoFRy2TRGiZatCpzoCLBEyaxHl8FdwdYhtyXx36tli7jurhYhFFaRrJLM_jgbo_UIqc94SmaMhugfpC8GJffDGTi-lf8U8DfHuAyasT9_-Y-BeEBYRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266297883</pqid></control><display><type>article</type><title>Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xu, Jie ; Bi, Shiming ; Tang, Weiqiang ; Kang, Qi ; Niu, Dongfang ; Hu, Shuozhen ; Zhao, Shuangliang ; Wang, Limin ; Xin, Zhong ; Zhang, Xinsheng</creator><creatorcontrib>Xu, Jie ; Bi, Shiming ; Tang, Weiqiang ; Kang, Qi ; Niu, Dongfang ; Hu, Shuozhen ; Zhao, Shuangliang ; Wang, Limin ; Xin, Zhong ; Zhang, Xinsheng</creatorcontrib><description>Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating nature of sulfur and their discharge products severely restrict the development of high-energy density Li-S batteries. Herein, a porous organic framework containing diketopyrrolopyrrole (DPP) building blocks is reasonably designed and it serves as a shuttle-inhibiting layer to bifunctionally increase the physical and chemical trapping of lithium polysulfides. The frameworks were synthesized through a bottom-up approach, allowing precise control of the network design at the molecular level. As a result, the framework-derived microscale networks with polar units effectively hinder the shuttle effect of polysulfides and promise excellent electrochemical performances with regard to improving kinetics and long-term cycling stability of Li-S batteries. DFT calculations demonstrate the charge transfer (CT) behavior and favorable binding energy between the DPP units and lithium polysulfides. This work not only provides a novel strategy to fabricate a bifunctional modified separator for high-performance Li-S batteries, but also inspires us to further develop advanced materials for emerging energy storage applications.
The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li-S batteries with high rate, high sulfur content and high capacity retention.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta05996b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transfer ; Electrochemistry ; Energy storage ; Flux density ; Kinetics ; Lithium ; Lithium sulfur batteries ; Nonaqueous electrolytes ; Organic chemistry ; Polysulfides ; Separators ; Storage systems ; Sulfur ; Trapping</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.181-1818</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a14414f931977b7911573ccf1fa7cea2dcc810ed9551d96dad6d7a015af65383</citedby><cites>FETCH-LOGICAL-c359t-a14414f931977b7911573ccf1fa7cea2dcc810ed9551d96dad6d7a015af65383</cites><orcidid>0000-0003-0569-6281 ; 0000-0003-3979-4146 ; 0000-0002-7726-4130 ; 0000-0002-4025-5361 ; 0000-0002-9547-4860 ; 0000-0002-7299-6762 ; 0000-0002-6542-2699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Bi, Shiming</creatorcontrib><creatorcontrib>Tang, Weiqiang</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><creatorcontrib>Niu, Dongfang</creatorcontrib><creatorcontrib>Hu, Shuozhen</creatorcontrib><creatorcontrib>Zhao, Shuangliang</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Xin, Zhong</creatorcontrib><creatorcontrib>Zhang, Xinsheng</creatorcontrib><title>Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating nature of sulfur and their discharge products severely restrict the development of high-energy density Li-S batteries. Herein, a porous organic framework containing diketopyrrolopyrrole (DPP) building blocks is reasonably designed and it serves as a shuttle-inhibiting layer to bifunctionally increase the physical and chemical trapping of lithium polysulfides. The frameworks were synthesized through a bottom-up approach, allowing precise control of the network design at the molecular level. As a result, the framework-derived microscale networks with polar units effectively hinder the shuttle effect of polysulfides and promise excellent electrochemical performances with regard to improving kinetics and long-term cycling stability of Li-S batteries. DFT calculations demonstrate the charge transfer (CT) behavior and favorable binding energy between the DPP units and lithium polysulfides. This work not only provides a novel strategy to fabricate a bifunctional modified separator for high-performance Li-S batteries, but also inspires us to further develop advanced materials for emerging energy storage applications.
The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li-S batteries with high rate, high sulfur content and high capacity retention.</description><subject>Charge transfer</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Nonaqueous electrolytes</subject><subject>Organic chemistry</subject><subject>Polysulfides</subject><subject>Separators</subject><subject>Storage systems</subject><subject>Sulfur</subject><subject>Trapping</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkc1Lw0AQxYMoWLQX78KCNyG6mzQfe6z1Ewpeeg-T3dl22zQbZxNq_hD_X1Nb6lzeY_jxBt4EwY3gD4LH8lHJFngiZVqeBaOIJzzMJjI9P_k8vwzG3q_5MDnnqZSj4Oe5ayr8Zi1B09h6yaDWTK2Alrjf1d4gsZ1tV6xxVe-7yliNnpU9A6btBlvX9ESuOgqGJXjUzNESaquYIdjiztGGGUdsZZersEEa_BZqhawagm23Dfe5HbES2hbJor8OLgxUHsdHvQoWry-L2Xs4_3z7mE3noYoT2YYgJhMxMTIWMsvKTAqRZLFSRhjIFEKklcoFRy2TRGiZatCpzoCLBEyaxHl8FdwdYhtyXx36tli7jurhYhFFaRrJLM_jgbo_UIqc94SmaMhugfpC8GJffDGTi-lf8U8DfHuAyasT9_-Y-BeEBYRM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xu, Jie</creator><creator>Bi, Shiming</creator><creator>Tang, Weiqiang</creator><creator>Kang, Qi</creator><creator>Niu, Dongfang</creator><creator>Hu, Shuozhen</creator><creator>Zhao, Shuangliang</creator><creator>Wang, Limin</creator><creator>Xin, Zhong</creator><creator>Zhang, Xinsheng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0569-6281</orcidid><orcidid>https://orcid.org/0000-0003-3979-4146</orcidid><orcidid>https://orcid.org/0000-0002-7726-4130</orcidid><orcidid>https://orcid.org/0000-0002-4025-5361</orcidid><orcidid>https://orcid.org/0000-0002-9547-4860</orcidid><orcidid>https://orcid.org/0000-0002-7299-6762</orcidid><orcidid>https://orcid.org/0000-0002-6542-2699</orcidid></search><sort><creationdate>2019</creationdate><title>Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries</title><author>Xu, Jie ; Bi, Shiming ; Tang, Weiqiang ; Kang, Qi ; Niu, Dongfang ; Hu, Shuozhen ; Zhao, Shuangliang ; Wang, Limin ; Xin, Zhong ; Zhang, Xinsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a14414f931977b7911573ccf1fa7cea2dcc810ed9551d96dad6d7a015af65383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transfer</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Nonaqueous electrolytes</topic><topic>Organic chemistry</topic><topic>Polysulfides</topic><topic>Separators</topic><topic>Storage systems</topic><topic>Sulfur</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Bi, Shiming</creatorcontrib><creatorcontrib>Tang, Weiqiang</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><creatorcontrib>Niu, Dongfang</creatorcontrib><creatorcontrib>Hu, Shuozhen</creatorcontrib><creatorcontrib>Zhao, Shuangliang</creatorcontrib><creatorcontrib>Wang, Limin</creatorcontrib><creatorcontrib>Xin, Zhong</creatorcontrib><creatorcontrib>Zhang, Xinsheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jie</au><au>Bi, Shiming</au><au>Tang, Weiqiang</au><au>Kang, Qi</au><au>Niu, Dongfang</au><au>Hu, Shuozhen</au><au>Zhao, Shuangliang</au><au>Wang, Limin</au><au>Xin, Zhong</au><au>Zhang, Xinsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>3</issue><spage>181</spage><epage>1818</epage><pages>181-1818</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-sulfur (Li-S) batteries are widely regarded as some of the most promising next-generation energy storage systems due to their cost advantage and high theoretical energy density. However, the shuttle effect arising from the dissolution of polysulfides into organic electrolyte, the insulating nature of sulfur and their discharge products severely restrict the development of high-energy density Li-S batteries. Herein, a porous organic framework containing diketopyrrolopyrrole (DPP) building blocks is reasonably designed and it serves as a shuttle-inhibiting layer to bifunctionally increase the physical and chemical trapping of lithium polysulfides. The frameworks were synthesized through a bottom-up approach, allowing precise control of the network design at the molecular level. As a result, the framework-derived microscale networks with polar units effectively hinder the shuttle effect of polysulfides and promise excellent electrochemical performances with regard to improving kinetics and long-term cycling stability of Li-S batteries. DFT calculations demonstrate the charge transfer (CT) behavior and favorable binding energy between the DPP units and lithium polysulfides. This work not only provides a novel strategy to fabricate a bifunctional modified separator for high-performance Li-S batteries, but also inspires us to further develop advanced materials for emerging energy storage applications.
The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li-S batteries with high rate, high sulfur content and high capacity retention.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta05996b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0569-6281</orcidid><orcidid>https://orcid.org/0000-0003-3979-4146</orcidid><orcidid>https://orcid.org/0000-0002-7726-4130</orcidid><orcidid>https://orcid.org/0000-0002-4025-5361</orcidid><orcidid>https://orcid.org/0000-0002-9547-4860</orcidid><orcidid>https://orcid.org/0000-0002-7299-6762</orcidid><orcidid>https://orcid.org/0000-0002-6542-2699</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (3), p.181-1818 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2266297883 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Charge transfer Electrochemistry Energy storage Flux density Kinetics Lithium Lithium sulfur batteries Nonaqueous electrolytes Organic chemistry Polysulfides Separators Storage systems Sulfur Trapping |
title | Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duplex%20trapping%20and%20charge%20transfer%20with%20polysulfides%20by%20a%20diketopyrrolopyrrole-based%20organic%20framework%20for%20high-performance%20lithium-sulfur%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xu,%20Jie&rft.date=2019&rft.volume=7&rft.issue=3&rft.spage=181&rft.epage=1818&rft.pages=181-1818&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta05996b&rft_dat=%3Cproquest_cross%3E2266297883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266297883&rft_id=info:pmid/&rfr_iscdi=true |