Effective and sustainable Cs + remediation via exchangeable sodium-ion sites in graphene oxide fibers
A monovalent sodium-functionalized graphene oxide fiber (Na–GO) structure was synthesized via facile and simple liquid coagulation of a graphene oxide solution. Supported by the stable GO framework, the readily accessible sodium site of this alkali-metal–carbon heterostructure allows effective remov...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (30), p.17754-17760 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17760 |
---|---|
container_issue | 30 |
container_start_page | 17754 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Lee, Heehyeon Lee, Kyungeun Kim, Sang Ouk Lee, Jae-Seung Oh, Youngtak |
description | A monovalent sodium-functionalized graphene oxide fiber (Na–GO) structure was synthesized
via
facile and simple liquid coagulation of a graphene oxide solution. Supported by the stable GO framework, the readily accessible sodium site of this alkali-metal–carbon heterostructure allows effective removal of Cs
+
in aqueous medium with a rapid equilibrium time (∼30 min) and a large adsorption capacity (220 mg g
−1
). Na–GO possesses physical and chemical integrity in a broad pH range (4–10), and the adsorption behavior is influenced by the hydration radius of the targeting cation, charge effect, π–M
+
interaction, and pH-dependent GO hydrophilicity. In utilizing the chemical potential effect of Na–GO, a simple regeneration process with NaOH solution selectively releases captured Cs
+
and replenishes functional sodium sites within the Na–GO structure, providing a rechargeable Cs
+
remediation functionality. This study demonstrates the successful adaptation of the alkali-metal-induced reversible ion-exchange principle for a versatile GO fiber structure. |
doi_str_mv | 10.1039/C9TA04027G |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266290782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266290782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-776082d3aca06a9674dc2b6f49a59af444f215612a14cd2d8f6a01509377b9203</originalsourceid><addsrcrecordid>eNpFkMFKw0AQhhdRsNRefIIFb0p0stnsZo8l1CoIXuo5TLKz7ZY2qbtJqW9va0Xn8g_8HzPwMXabwmMKmXkqzWIKEoSeX7CRgBwSLY26_NuL4ppNYlzDcQoAZcyI0cw5anq_J46t5XGIPfoW6w3xMvIHHmhL1mPvu5bvPXI6NCtsl_RDxM76YZucuuh7ity3fBlwt6KWeHfwlrjzNYV4w64cbiJNfnPMPp5ni_IleXufv5bTt6QRRvWJ1goKYTNsEBQapaVtRK2cNJgbdFJKJ9JcpQJT2VhhC6cQ0hxMpnVtBGRjdne-uwvd50Cxr9bdENrjy0oIpYQBXYgjdX-mmtDFGMhVu-C3GL6qFKqTyerfZPYNf2Bk7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266290782</pqid></control><display><type>article</type><title>Effective and sustainable Cs + remediation via exchangeable sodium-ion sites in graphene oxide fibers</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lee, Heehyeon ; Lee, Kyungeun ; Kim, Sang Ouk ; Lee, Jae-Seung ; Oh, Youngtak</creator><creatorcontrib>Lee, Heehyeon ; Lee, Kyungeun ; Kim, Sang Ouk ; Lee, Jae-Seung ; Oh, Youngtak</creatorcontrib><description>A monovalent sodium-functionalized graphene oxide fiber (Na–GO) structure was synthesized
via
facile and simple liquid coagulation of a graphene oxide solution. Supported by the stable GO framework, the readily accessible sodium site of this alkali-metal–carbon heterostructure allows effective removal of Cs
+
in aqueous medium with a rapid equilibrium time (∼30 min) and a large adsorption capacity (220 mg g
−1
). Na–GO possesses physical and chemical integrity in a broad pH range (4–10), and the adsorption behavior is influenced by the hydration radius of the targeting cation, charge effect, π–M
+
interaction, and pH-dependent GO hydrophilicity. In utilizing the chemical potential effect of Na–GO, a simple regeneration process with NaOH solution selectively releases captured Cs
+
and replenishes functional sodium sites within the Na–GO structure, providing a rechargeable Cs
+
remediation functionality. This study demonstrates the successful adaptation of the alkali-metal-induced reversible ion-exchange principle for a versatile GO fiber structure.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA04027G</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Alkali metals ; Aqueous solutions ; Cesium ; Chemical potential ; Coagulation ; Fibers ; Graphene ; Heterostructures ; Ion exchange ; Metals ; Organic chemistry ; pH effects ; Regeneration ; Remediation ; Sodium ; Sodium hydroxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (30), p.17754-17760</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-776082d3aca06a9674dc2b6f49a59af444f215612a14cd2d8f6a01509377b9203</citedby><cites>FETCH-LOGICAL-c296t-776082d3aca06a9674dc2b6f49a59af444f215612a14cd2d8f6a01509377b9203</cites><orcidid>0000-0003-1513-6042 ; 0000-0002-2599-019X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Heehyeon</creatorcontrib><creatorcontrib>Lee, Kyungeun</creatorcontrib><creatorcontrib>Kim, Sang Ouk</creatorcontrib><creatorcontrib>Lee, Jae-Seung</creatorcontrib><creatorcontrib>Oh, Youngtak</creatorcontrib><title>Effective and sustainable Cs + remediation via exchangeable sodium-ion sites in graphene oxide fibers</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>A monovalent sodium-functionalized graphene oxide fiber (Na–GO) structure was synthesized
via
facile and simple liquid coagulation of a graphene oxide solution. Supported by the stable GO framework, the readily accessible sodium site of this alkali-metal–carbon heterostructure allows effective removal of Cs
+
in aqueous medium with a rapid equilibrium time (∼30 min) and a large adsorption capacity (220 mg g
−1
). Na–GO possesses physical and chemical integrity in a broad pH range (4–10), and the adsorption behavior is influenced by the hydration radius of the targeting cation, charge effect, π–M
+
interaction, and pH-dependent GO hydrophilicity. In utilizing the chemical potential effect of Na–GO, a simple regeneration process with NaOH solution selectively releases captured Cs
+
and replenishes functional sodium sites within the Na–GO structure, providing a rechargeable Cs
+
remediation functionality. This study demonstrates the successful adaptation of the alkali-metal-induced reversible ion-exchange principle for a versatile GO fiber structure.</description><subject>Adsorption</subject><subject>Alkali metals</subject><subject>Aqueous solutions</subject><subject>Cesium</subject><subject>Chemical potential</subject><subject>Coagulation</subject><subject>Fibers</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Ion exchange</subject><subject>Metals</subject><subject>Organic chemistry</subject><subject>pH effects</subject><subject>Regeneration</subject><subject>Remediation</subject><subject>Sodium</subject><subject>Sodium hydroxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKw0AQhhdRsNRefIIFb0p0stnsZo8l1CoIXuo5TLKz7ZY2qbtJqW9va0Xn8g_8HzPwMXabwmMKmXkqzWIKEoSeX7CRgBwSLY26_NuL4ppNYlzDcQoAZcyI0cw5anq_J46t5XGIPfoW6w3xMvIHHmhL1mPvu5bvPXI6NCtsl_RDxM76YZucuuh7ity3fBlwt6KWeHfwlrjzNYV4w64cbiJNfnPMPp5ni_IleXufv5bTt6QRRvWJ1goKYTNsEBQapaVtRK2cNJgbdFJKJ9JcpQJT2VhhC6cQ0hxMpnVtBGRjdne-uwvd50Cxr9bdENrjy0oIpYQBXYgjdX-mmtDFGMhVu-C3GL6qFKqTyerfZPYNf2Bk7Q</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Lee, Heehyeon</creator><creator>Lee, Kyungeun</creator><creator>Kim, Sang Ouk</creator><creator>Lee, Jae-Seung</creator><creator>Oh, Youngtak</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1513-6042</orcidid><orcidid>https://orcid.org/0000-0002-2599-019X</orcidid></search><sort><creationdate>2019</creationdate><title>Effective and sustainable Cs + remediation via exchangeable sodium-ion sites in graphene oxide fibers</title><author>Lee, Heehyeon ; Lee, Kyungeun ; Kim, Sang Ouk ; Lee, Jae-Seung ; Oh, Youngtak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-776082d3aca06a9674dc2b6f49a59af444f215612a14cd2d8f6a01509377b9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Alkali metals</topic><topic>Aqueous solutions</topic><topic>Cesium</topic><topic>Chemical potential</topic><topic>Coagulation</topic><topic>Fibers</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Ion exchange</topic><topic>Metals</topic><topic>Organic chemistry</topic><topic>pH effects</topic><topic>Regeneration</topic><topic>Remediation</topic><topic>Sodium</topic><topic>Sodium hydroxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Heehyeon</creatorcontrib><creatorcontrib>Lee, Kyungeun</creatorcontrib><creatorcontrib>Kim, Sang Ouk</creatorcontrib><creatorcontrib>Lee, Jae-Seung</creatorcontrib><creatorcontrib>Oh, Youngtak</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Heehyeon</au><au>Lee, Kyungeun</au><au>Kim, Sang Ouk</au><au>Lee, Jae-Seung</au><au>Oh, Youngtak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective and sustainable Cs + remediation via exchangeable sodium-ion sites in graphene oxide fibers</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>30</issue><spage>17754</spage><epage>17760</epage><pages>17754-17760</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>A monovalent sodium-functionalized graphene oxide fiber (Na–GO) structure was synthesized
via
facile and simple liquid coagulation of a graphene oxide solution. Supported by the stable GO framework, the readily accessible sodium site of this alkali-metal–carbon heterostructure allows effective removal of Cs
+
in aqueous medium with a rapid equilibrium time (∼30 min) and a large adsorption capacity (220 mg g
−1
). Na–GO possesses physical and chemical integrity in a broad pH range (4–10), and the adsorption behavior is influenced by the hydration radius of the targeting cation, charge effect, π–M
+
interaction, and pH-dependent GO hydrophilicity. In utilizing the chemical potential effect of Na–GO, a simple regeneration process with NaOH solution selectively releases captured Cs
+
and replenishes functional sodium sites within the Na–GO structure, providing a rechargeable Cs
+
remediation functionality. This study demonstrates the successful adaptation of the alkali-metal-induced reversible ion-exchange principle for a versatile GO fiber structure.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA04027G</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1513-6042</orcidid><orcidid>https://orcid.org/0000-0002-2599-019X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (30), p.17754-17760 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2266290782 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Adsorption Alkali metals Aqueous solutions Cesium Chemical potential Coagulation Fibers Graphene Heterostructures Ion exchange Metals Organic chemistry pH effects Regeneration Remediation Sodium Sodium hydroxide |
title | Effective and sustainable Cs + remediation via exchangeable sodium-ion sites in graphene oxide fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20and%20sustainable%20Cs%20+%20remediation%20via%20exchangeable%20sodium-ion%20sites%20in%20graphene%20oxide%20fibers&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lee,%20Heehyeon&rft.date=2019&rft.volume=7&rft.issue=30&rft.spage=17754&rft.epage=17760&rft.pages=17754-17760&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA04027G&rft_dat=%3Cproquest_cross%3E2266290782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266290782&rft_id=info:pmid/&rfr_iscdi=true |