Synthesis of Manganese‐Based Prussian Blue Nanocubes with Organic Solvent as High‐Performance Anodes for Lithium‐Ion Batteries

Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes with an average edge length of about 60 nm were synthesized by a simple hydrothermal reaction involving methanol. The microscopic size of m‐KMHCF nanocubes could be easily reduced to less than 100 nm as methanol was added to the reaction, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of inorganic chemistry 2019-07, Vol.2019 (28), p.3277-3286
Hauptverfasser: Nie, Chuanhao, Zhang, Xun, Ren, Haipeng, Xing, Zheng, Cao, Xichuan, Liu, Jinlong, Wei, Denghu, Ju, Zhicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3286
container_issue 28
container_start_page 3277
container_title European journal of inorganic chemistry
container_volume 2019
creator Nie, Chuanhao
Zhang, Xun
Ren, Haipeng
Xing, Zheng
Cao, Xichuan
Liu, Jinlong
Wei, Denghu
Ju, Zhicheng
description Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes with an average edge length of about 60 nm were synthesized by a simple hydrothermal reaction involving methanol. The microscopic size of m‐KMHCF nanocubes could be easily reduced to less than 100 nm as methanol was added to the reaction, over a long range of reaction temperatures and reaction times. As anode material for lithium‐ion batteries, the m‐KMHCF electrode delivered a high specific capacity of over 900 mAh g–1 at a current density of 100 mA g–1 after 50 cycles. In addition, it provided stable rate capability and lithium storage performance at the high current density of 382.3 mAh g–1 at 5000 mA g–1. It is worth noting that the capacity continued to rise during the galvanostatic charge‐discharge, and the specific capacity increased after charging and discharging at the large current. This phenomenon and the excellent electrochemical performance are mainly derived from the smaller microscopic size, which further led to crystal particle refinement during charge‐discharge. Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes of size less than 100 nm were synthesized hydrothermally using methanol. As anode material for lithium‐ion batteries, the m‐KMHCF electrode delivered a high specific capacity of over 900 mAh g–1 at a current density of 100 mA g–1 after 50 cycles, as well as stable rate and lithium storage performance at a high current density of 382.3 mAh g–1 at 5000 mA g–1.
doi_str_mv 10.1002/ejic.201900458
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266256780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266256780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-3ee0b89802ed2e9d57d73484c06d1eb931467cdd22effaef3a27aec1052ae7803</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhjdGExG9em7ieXHaLvtxBIKCQSFBz5vSnYUSaLHdlXDz4A_wN_pLLFmjR08zkzzPO8kbBNcUOhSA3eJayQ4DmgFE3fQkaFHIshDilJ36PeJRSLMoPQ8unFsDAAcet4KP-UFXK3TKEVOSR6GXQqPDr_fPvnBYkJmtnVNCk_6mRvIktJH1Ah3Zq2pFptbTSpK52byhrohwZKSWKy_P0JbGboWWSHraFN7wN5l4S9VbD4yNjxRVhVahuwzOSrFxePUz28HL3fB5MAon0_vxoDcJJadJGnJEWKRZCgwLhlnRTYqER2kkIS4oLjJOoziRRcEYlqXAkguWCJQUukxgkgJvBzdN7s6a1xpdla9NbbV_mTMWx6wbN1SnoaQ1zlks851VW2EPOYX82HR-bDr_bdoLWSPs1QYP_9D58GE8-HO_AVFFhzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266256780</pqid></control><display><type>article</type><title>Synthesis of Manganese‐Based Prussian Blue Nanocubes with Organic Solvent as High‐Performance Anodes for Lithium‐Ion Batteries</title><source>Wiley Online Library All Journals</source><creator>Nie, Chuanhao ; Zhang, Xun ; Ren, Haipeng ; Xing, Zheng ; Cao, Xichuan ; Liu, Jinlong ; Wei, Denghu ; Ju, Zhicheng</creator><creatorcontrib>Nie, Chuanhao ; Zhang, Xun ; Ren, Haipeng ; Xing, Zheng ; Cao, Xichuan ; Liu, Jinlong ; Wei, Denghu ; Ju, Zhicheng</creatorcontrib><description>Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes with an average edge length of about 60 nm were synthesized by a simple hydrothermal reaction involving methanol. The microscopic size of m‐KMHCF nanocubes could be easily reduced to less than 100 nm as methanol was added to the reaction, over a long range of reaction temperatures and reaction times. As anode material for lithium‐ion batteries, the m‐KMHCF electrode delivered a high specific capacity of over 900 mAh g–1 at a current density of 100 mA g–1 after 50 cycles. In addition, it provided stable rate capability and lithium storage performance at the high current density of 382.3 mAh g–1 at 5000 mA g–1. It is worth noting that the capacity continued to rise during the galvanostatic charge‐discharge, and the specific capacity increased after charging and discharging at the large current. This phenomenon and the excellent electrochemical performance are mainly derived from the smaller microscopic size, which further led to crystal particle refinement during charge‐discharge. Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes of size less than 100 nm were synthesized hydrothermally using methanol. As anode material for lithium‐ion batteries, the m‐KMHCF electrode delivered a high specific capacity of over 900 mAh g–1 at a current density of 100 mA g–1 after 50 cycles, as well as stable rate and lithium storage performance at a high current density of 382.3 mAh g–1 at 5000 mA g–1.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201900458</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anode materials ; Anodes ; Current density ; Discharge ; Electrochemical analysis ; Electrode materials ; Hydrothermal reactions ; Inorganic chemistry ; Lithium ; Lithium-ion batteries ; Manganese ; Methanol ; Nanoparticles ; Pigments ; Prussian blue analogues</subject><ispartof>European journal of inorganic chemistry, 2019-07, Vol.2019 (28), p.3277-3286</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-3ee0b89802ed2e9d57d73484c06d1eb931467cdd22effaef3a27aec1052ae7803</citedby><cites>FETCH-LOGICAL-c3178-3ee0b89802ed2e9d57d73484c06d1eb931467cdd22effaef3a27aec1052ae7803</cites><orcidid>0000-0002-6316-282X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201900458$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201900458$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Nie, Chuanhao</creatorcontrib><creatorcontrib>Zhang, Xun</creatorcontrib><creatorcontrib>Ren, Haipeng</creatorcontrib><creatorcontrib>Xing, Zheng</creatorcontrib><creatorcontrib>Cao, Xichuan</creatorcontrib><creatorcontrib>Liu, Jinlong</creatorcontrib><creatorcontrib>Wei, Denghu</creatorcontrib><creatorcontrib>Ju, Zhicheng</creatorcontrib><title>Synthesis of Manganese‐Based Prussian Blue Nanocubes with Organic Solvent as High‐Performance Anodes for Lithium‐Ion Batteries</title><title>European journal of inorganic chemistry</title><description>Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes with an average edge length of about 60 nm were synthesized by a simple hydrothermal reaction involving methanol. The microscopic size of m‐KMHCF nanocubes could be easily reduced to less than 100 nm as methanol was added to the reaction, over a long range of reaction temperatures and reaction times. As anode material for lithium‐ion batteries, the m‐KMHCF electrode delivered a high specific capacity of over 900 mAh g–1 at a current density of 100 mA g–1 after 50 cycles. In addition, it provided stable rate capability and lithium storage performance at the high current density of 382.3 mAh g–1 at 5000 mA g–1. It is worth noting that the capacity continued to rise during the galvanostatic charge‐discharge, and the specific capacity increased after charging and discharging at the large current. This phenomenon and the excellent electrochemical performance are mainly derived from the smaller microscopic size, which further led to crystal particle refinement during charge‐discharge. Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes of size less than 100 nm were synthesized hydrothermally using methanol. As anode material for lithium‐ion batteries, the m‐KMHCF electrode delivered a high specific capacity of over 900 mAh g–1 at a current density of 100 mA g–1 after 50 cycles, as well as stable rate and lithium storage performance at a high current density of 382.3 mAh g–1 at 5000 mA g–1.</description><subject>Anode materials</subject><subject>Anodes</subject><subject>Current density</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Hydrothermal reactions</subject><subject>Inorganic chemistry</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Methanol</subject><subject>Nanoparticles</subject><subject>Pigments</subject><subject>Prussian blue analogues</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhjdGExG9em7ieXHaLvtxBIKCQSFBz5vSnYUSaLHdlXDz4A_wN_pLLFmjR08zkzzPO8kbBNcUOhSA3eJayQ4DmgFE3fQkaFHIshDilJ36PeJRSLMoPQ8unFsDAAcet4KP-UFXK3TKEVOSR6GXQqPDr_fPvnBYkJmtnVNCk_6mRvIktJH1Ah3Zq2pFptbTSpK52byhrohwZKSWKy_P0JbGboWWSHraFN7wN5l4S9VbD4yNjxRVhVahuwzOSrFxePUz28HL3fB5MAon0_vxoDcJJadJGnJEWKRZCgwLhlnRTYqER2kkIS4oLjJOoziRRcEYlqXAkguWCJQUukxgkgJvBzdN7s6a1xpdla9NbbV_mTMWx6wbN1SnoaQ1zlks851VW2EPOYX82HR-bDr_bdoLWSPs1QYP_9D58GE8-HO_AVFFhzc</recordid><startdate>20190731</startdate><enddate>20190731</enddate><creator>Nie, Chuanhao</creator><creator>Zhang, Xun</creator><creator>Ren, Haipeng</creator><creator>Xing, Zheng</creator><creator>Cao, Xichuan</creator><creator>Liu, Jinlong</creator><creator>Wei, Denghu</creator><creator>Ju, Zhicheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6316-282X</orcidid></search><sort><creationdate>20190731</creationdate><title>Synthesis of Manganese‐Based Prussian Blue Nanocubes with Organic Solvent as High‐Performance Anodes for Lithium‐Ion Batteries</title><author>Nie, Chuanhao ; Zhang, Xun ; Ren, Haipeng ; Xing, Zheng ; Cao, Xichuan ; Liu, Jinlong ; Wei, Denghu ; Ju, Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-3ee0b89802ed2e9d57d73484c06d1eb931467cdd22effaef3a27aec1052ae7803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anode materials</topic><topic>Anodes</topic><topic>Current density</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Hydrothermal reactions</topic><topic>Inorganic chemistry</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Methanol</topic><topic>Nanoparticles</topic><topic>Pigments</topic><topic>Prussian blue analogues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Chuanhao</creatorcontrib><creatorcontrib>Zhang, Xun</creatorcontrib><creatorcontrib>Ren, Haipeng</creatorcontrib><creatorcontrib>Xing, Zheng</creatorcontrib><creatorcontrib>Cao, Xichuan</creatorcontrib><creatorcontrib>Liu, Jinlong</creatorcontrib><creatorcontrib>Wei, Denghu</creatorcontrib><creatorcontrib>Ju, Zhicheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Chuanhao</au><au>Zhang, Xun</au><au>Ren, Haipeng</au><au>Xing, Zheng</au><au>Cao, Xichuan</au><au>Liu, Jinlong</au><au>Wei, Denghu</au><au>Ju, Zhicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Manganese‐Based Prussian Blue Nanocubes with Organic Solvent as High‐Performance Anodes for Lithium‐Ion Batteries</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2019-07-31</date><risdate>2019</risdate><volume>2019</volume><issue>28</issue><spage>3277</spage><epage>3286</epage><pages>3277-3286</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes with an average edge length of about 60 nm were synthesized by a simple hydrothermal reaction involving methanol. The microscopic size of m‐KMHCF nanocubes could be easily reduced to less than 100 nm as methanol was added to the reaction, over a long range of reaction temperatures and reaction times. As anode material for lithium‐ion batteries, the m‐KMHCF electrode delivered a high specific capacity of over 900 mAh g–1 at a current density of 100 mA g–1 after 50 cycles. In addition, it provided stable rate capability and lithium storage performance at the high current density of 382.3 mAh g–1 at 5000 mA g–1. It is worth noting that the capacity continued to rise during the galvanostatic charge‐discharge, and the specific capacity increased after charging and discharging at the large current. This phenomenon and the excellent electrochemical performance are mainly derived from the smaller microscopic size, which further led to crystal particle refinement during charge‐discharge. Prussian blue analogue KxMnFe(CN)6·yH2O (m‐KMHCF) nanocubes of size less than 100 nm were synthesized hydrothermally using methanol. As anode material for lithium‐ion batteries, the m‐KMHCF electrode delivered a high specific capacity of over 900 mAh g–1 at a current density of 100 mA g–1 after 50 cycles, as well as stable rate and lithium storage performance at a high current density of 382.3 mAh g–1 at 5000 mA g–1.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201900458</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6316-282X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2019-07, Vol.2019 (28), p.3277-3286
issn 1434-1948
1099-0682
language eng
recordid cdi_proquest_journals_2266256780
source Wiley Online Library All Journals
subjects Anode materials
Anodes
Current density
Discharge
Electrochemical analysis
Electrode materials
Hydrothermal reactions
Inorganic chemistry
Lithium
Lithium-ion batteries
Manganese
Methanol
Nanoparticles
Pigments
Prussian blue analogues
title Synthesis of Manganese‐Based Prussian Blue Nanocubes with Organic Solvent as High‐Performance Anodes for Lithium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Manganese%E2%80%90Based%20Prussian%20Blue%20Nanocubes%20with%20Organic%20Solvent%20as%20High%E2%80%90Performance%20Anodes%20for%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Nie,%20Chuanhao&rft.date=2019-07-31&rft.volume=2019&rft.issue=28&rft.spage=3277&rft.epage=3286&rft.pages=3277-3286&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201900458&rft_dat=%3Cproquest_cross%3E2266256780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266256780&rft_id=info:pmid/&rfr_iscdi=true