Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control
This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that al...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2020-05, Vol.98 (2), p.359-376 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 376 |
---|---|
container_issue | 2 |
container_start_page | 359 |
container_title | Journal of intelligent & robotic systems |
container_volume | 98 |
creator | Tavares, Augusto de Holanda B. M. Madruga, Sarah Pontes Brito, Alisson V. Nascimento, Tiago P. |
description | This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that allows for behavior change at the controller level. An explanation of the control algorithm, behavior selection, and leader selection structure is given, after which the results of both simulations and experiments using a three robot formation are shown and discussed. |
doi_str_mv | 10.1007/s10846-019-01064-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2266190336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725560049</galeid><sourcerecordid>A725560049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-607a174eec665ecf7ea3fe902c98487a71c4ef3af0a577b8f451a582bf47b0653</originalsourceid><addsrcrecordid>eNp9kF1rHCEUhqUk0E3SP9ArodeTHmf8GC-320_YfEDSu4K4zjEYZjVRN7D_vrYT6F2Rg-B5n3PkIeQ9g0sGoD4WBiOXHTDdCiTv-BuyYkINHXDQJ2QFumcd9Fq-JWelPAKAHoVekV-fj9Hug6NbtBNmup7n5GwNKdIQ6dVhrqHLaZcqvTuWivtCP9mCE2396xTnENFmepUmnOltxim4Gl6QblKsOc0X5NTbueC71_uc_Pz65X7zvdvefPuxWW87N4ixdhKUZYojOikFOq_QDh419E6PfFRWMcfRD9aDFUrtRs8Fs2Lsd56rHUgxnJMPy9ynnJ4PWKp5TIcc20rT91IyDcMgW-pyST3YGU2IPtVsXTsTNgEpog_tfa16ISQA1w3oF8DlVEpGb55y2Nt8NAzMH-1m0W6advNXu-ENGhaotHB8wPzvL_-hfgO4dIT3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266190336</pqid></control><display><type>article</type><title>Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control</title><source>Springer Nature - Complete Springer Journals</source><creator>Tavares, Augusto de Holanda B. M. ; Madruga, Sarah Pontes ; Brito, Alisson V. ; Nascimento, Tiago P.</creator><creatorcontrib>Tavares, Augusto de Holanda B. M. ; Madruga, Sarah Pontes ; Brito, Alisson V. ; Nascimento, Tiago P.</creatorcontrib><description>This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that allows for behavior change at the controller level. An explanation of the control algorithm, behavior selection, and leader selection structure is given, after which the results of both simulations and experiments using a three robot formation are shown and discussed.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-019-01064-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Computer simulation ; Control ; Control algorithms ; Control theory ; Electrical Engineering ; Embedded systems ; Engineering ; Mechanical Engineering ; Mechatronics ; Multiple robots ; Nonlinear control ; Nonlinear systems ; Predictive control ; Robotics ; Robotics industry ; Robots</subject><ispartof>Journal of intelligent & robotic systems, 2020-05, Vol.98 (2), p.359-376</ispartof><rights>Springer Nature B.V. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-607a174eec665ecf7ea3fe902c98487a71c4ef3af0a577b8f451a582bf47b0653</citedby><cites>FETCH-LOGICAL-c358t-607a174eec665ecf7ea3fe902c98487a71c4ef3af0a577b8f451a582bf47b0653</cites><orcidid>0000-0002-9319-2114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-019-01064-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-019-01064-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Tavares, Augusto de Holanda B. M.</creatorcontrib><creatorcontrib>Madruga, Sarah Pontes</creatorcontrib><creatorcontrib>Brito, Alisson V.</creatorcontrib><creatorcontrib>Nascimento, Tiago P.</creatorcontrib><title>Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that allows for behavior change at the controller level. An explanation of the control algorithm, behavior selection, and leader selection structure is given, after which the results of both simulations and experiments using a three robot formation are shown and discussed.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Electrical Engineering</subject><subject>Embedded systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Multiple robots</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Predictive control</subject><subject>Robotics</subject><subject>Robotics industry</subject><subject>Robots</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF1rHCEUhqUk0E3SP9ArodeTHmf8GC-320_YfEDSu4K4zjEYZjVRN7D_vrYT6F2Rg-B5n3PkIeQ9g0sGoD4WBiOXHTDdCiTv-BuyYkINHXDQJ2QFumcd9Fq-JWelPAKAHoVekV-fj9Hug6NbtBNmup7n5GwNKdIQ6dVhrqHLaZcqvTuWivtCP9mCE2396xTnENFmepUmnOltxim4Gl6QblKsOc0X5NTbueC71_uc_Pz65X7zvdvefPuxWW87N4ixdhKUZYojOikFOq_QDh419E6PfFRWMcfRD9aDFUrtRs8Fs2Lsd56rHUgxnJMPy9ynnJ4PWKp5TIcc20rT91IyDcMgW-pyST3YGU2IPtVsXTsTNgEpog_tfa16ISQA1w3oF8DlVEpGb55y2Nt8NAzMH-1m0W6advNXu-ENGhaotHB8wPzvL_-hfgO4dIT3</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Tavares, Augusto de Holanda B. M.</creator><creator>Madruga, Sarah Pontes</creator><creator>Brito, Alisson V.</creator><creator>Nascimento, Tiago P.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9319-2114</orcidid></search><sort><creationdate>20200501</creationdate><title>Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control</title><author>Tavares, Augusto de Holanda B. M. ; Madruga, Sarah Pontes ; Brito, Alisson V. ; Nascimento, Tiago P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-607a174eec665ecf7ea3fe902c98487a71c4ef3af0a577b8f451a582bf47b0653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Electrical Engineering</topic><topic>Embedded systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Multiple robots</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Predictive control</topic><topic>Robotics</topic><topic>Robotics industry</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavares, Augusto de Holanda B. M.</creatorcontrib><creatorcontrib>Madruga, Sarah Pontes</creatorcontrib><creatorcontrib>Brito, Alisson V.</creatorcontrib><creatorcontrib>Nascimento, Tiago P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavares, Augusto de Holanda B. M.</au><au>Madruga, Sarah Pontes</au><au>Brito, Alisson V.</au><au>Nascimento, Tiago P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>98</volume><issue>2</issue><spage>359</spage><epage>376</epage><pages>359-376</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that allows for behavior change at the controller level. An explanation of the control algorithm, behavior selection, and leader selection structure is given, after which the results of both simulations and experiments using a three robot formation are shown and discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-019-01064-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9319-2114</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2020-05, Vol.98 (2), p.359-376 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2266190336 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Analysis Artificial Intelligence Computer simulation Control Control algorithms Control theory Electrical Engineering Embedded systems Engineering Mechanical Engineering Mechatronics Multiple robots Nonlinear control Nonlinear systems Predictive control Robotics Robotics industry Robots |
title | Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Leader%20Allocation%20in%20Multi-robot%20Systems%20Based%20on%20Nonlinear%20Model%20Predictive%20Control&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Tavares,%20Augusto%20de%20Holanda%20B.%20M.&rft.date=2020-05-01&rft.volume=98&rft.issue=2&rft.spage=359&rft.epage=376&rft.pages=359-376&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-019-01064-4&rft_dat=%3Cgale_proqu%3EA725560049%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266190336&rft_id=info:pmid/&rft_galeid=A725560049&rfr_iscdi=true |