Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control

This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2020-05, Vol.98 (2), p.359-376
Hauptverfasser: Tavares, Augusto de Holanda B. M., Madruga, Sarah Pontes, Brito, Alisson V., Nascimento, Tiago P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue 2
container_start_page 359
container_title Journal of intelligent & robotic systems
container_volume 98
creator Tavares, Augusto de Holanda B. M.
Madruga, Sarah Pontes
Brito, Alisson V.
Nascimento, Tiago P.
description This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that allows for behavior change at the controller level. An explanation of the control algorithm, behavior selection, and leader selection structure is given, after which the results of both simulations and experiments using a three robot formation are shown and discussed.
doi_str_mv 10.1007/s10846-019-01064-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2266190336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725560049</galeid><sourcerecordid>A725560049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-607a174eec665ecf7ea3fe902c98487a71c4ef3af0a577b8f451a582bf47b0653</originalsourceid><addsrcrecordid>eNp9kF1rHCEUhqUk0E3SP9ArodeTHmf8GC-320_YfEDSu4K4zjEYZjVRN7D_vrYT6F2Rg-B5n3PkIeQ9g0sGoD4WBiOXHTDdCiTv-BuyYkINHXDQJ2QFumcd9Fq-JWelPAKAHoVekV-fj9Hug6NbtBNmup7n5GwNKdIQ6dVhrqHLaZcqvTuWivtCP9mCE2396xTnENFmepUmnOltxim4Gl6QblKsOc0X5NTbueC71_uc_Pz65X7zvdvefPuxWW87N4ixdhKUZYojOikFOq_QDh419E6PfFRWMcfRD9aDFUrtRs8Fs2Lsd56rHUgxnJMPy9ynnJ4PWKp5TIcc20rT91IyDcMgW-pyST3YGU2IPtVsXTsTNgEpog_tfa16ISQA1w3oF8DlVEpGb55y2Nt8NAzMH-1m0W6advNXu-ENGhaotHB8wPzvL_-hfgO4dIT3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266190336</pqid></control><display><type>article</type><title>Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control</title><source>Springer Nature - Complete Springer Journals</source><creator>Tavares, Augusto de Holanda B. M. ; Madruga, Sarah Pontes ; Brito, Alisson V. ; Nascimento, Tiago P.</creator><creatorcontrib>Tavares, Augusto de Holanda B. M. ; Madruga, Sarah Pontes ; Brito, Alisson V. ; Nascimento, Tiago P.</creatorcontrib><description>This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that allows for behavior change at the controller level. An explanation of the control algorithm, behavior selection, and leader selection structure is given, after which the results of both simulations and experiments using a three robot formation are shown and discussed.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-019-01064-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Computer simulation ; Control ; Control algorithms ; Control theory ; Electrical Engineering ; Embedded systems ; Engineering ; Mechanical Engineering ; Mechatronics ; Multiple robots ; Nonlinear control ; Nonlinear systems ; Predictive control ; Robotics ; Robotics industry ; Robots</subject><ispartof>Journal of intelligent &amp; robotic systems, 2020-05, Vol.98 (2), p.359-376</ispartof><rights>Springer Nature B.V. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-607a174eec665ecf7ea3fe902c98487a71c4ef3af0a577b8f451a582bf47b0653</citedby><cites>FETCH-LOGICAL-c358t-607a174eec665ecf7ea3fe902c98487a71c4ef3af0a577b8f451a582bf47b0653</cites><orcidid>0000-0002-9319-2114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-019-01064-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-019-01064-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Tavares, Augusto de Holanda B. M.</creatorcontrib><creatorcontrib>Madruga, Sarah Pontes</creatorcontrib><creatorcontrib>Brito, Alisson V.</creatorcontrib><creatorcontrib>Nascimento, Tiago P.</creatorcontrib><title>Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that allows for behavior change at the controller level. An explanation of the control algorithm, behavior selection, and leader selection structure is given, after which the results of both simulations and experiments using a three robot formation are shown and discussed.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Electrical Engineering</subject><subject>Embedded systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Multiple robots</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Predictive control</subject><subject>Robotics</subject><subject>Robotics industry</subject><subject>Robots</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF1rHCEUhqUk0E3SP9ArodeTHmf8GC-320_YfEDSu4K4zjEYZjVRN7D_vrYT6F2Rg-B5n3PkIeQ9g0sGoD4WBiOXHTDdCiTv-BuyYkINHXDQJ2QFumcd9Fq-JWelPAKAHoVekV-fj9Hug6NbtBNmup7n5GwNKdIQ6dVhrqHLaZcqvTuWivtCP9mCE2396xTnENFmepUmnOltxim4Gl6QblKsOc0X5NTbueC71_uc_Pz65X7zvdvefPuxWW87N4ixdhKUZYojOikFOq_QDh419E6PfFRWMcfRD9aDFUrtRs8Fs2Lsd56rHUgxnJMPy9ynnJ4PWKp5TIcc20rT91IyDcMgW-pyST3YGU2IPtVsXTsTNgEpog_tfa16ISQA1w3oF8DlVEpGb55y2Nt8NAzMH-1m0W6advNXu-ENGhaotHB8wPzvL_-hfgO4dIT3</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Tavares, Augusto de Holanda B. M.</creator><creator>Madruga, Sarah Pontes</creator><creator>Brito, Alisson V.</creator><creator>Nascimento, Tiago P.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9319-2114</orcidid></search><sort><creationdate>20200501</creationdate><title>Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control</title><author>Tavares, Augusto de Holanda B. M. ; Madruga, Sarah Pontes ; Brito, Alisson V. ; Nascimento, Tiago P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-607a174eec665ecf7ea3fe902c98487a71c4ef3af0a577b8f451a582bf47b0653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Electrical Engineering</topic><topic>Embedded systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Multiple robots</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Predictive control</topic><topic>Robotics</topic><topic>Robotics industry</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavares, Augusto de Holanda B. M.</creatorcontrib><creatorcontrib>Madruga, Sarah Pontes</creatorcontrib><creatorcontrib>Brito, Alisson V.</creatorcontrib><creatorcontrib>Nascimento, Tiago P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavares, Augusto de Holanda B. M.</au><au>Madruga, Sarah Pontes</au><au>Brito, Alisson V.</au><au>Nascimento, Tiago P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>98</volume><issue>2</issue><spage>359</spage><epage>376</epage><pages>359-376</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>This paper presents an approach to the dynamic leader selection problem in autonomous non-holonomic mobile robot formations when the current leader enters a failure state. Our method is based on a tree structure coupled with a modified version of the Nonlinear Model Predictive Control (NMPC) that allows for behavior change at the controller level. An explanation of the control algorithm, behavior selection, and leader selection structure is given, after which the results of both simulations and experiments using a three robot formation are shown and discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-019-01064-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9319-2114</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2020-05, Vol.98 (2), p.359-376
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2266190336
source Springer Nature - Complete Springer Journals
subjects Algorithms
Analysis
Artificial Intelligence
Computer simulation
Control
Control algorithms
Control theory
Electrical Engineering
Embedded systems
Engineering
Mechanical Engineering
Mechatronics
Multiple robots
Nonlinear control
Nonlinear systems
Predictive control
Robotics
Robotics industry
Robots
title Dynamic Leader Allocation in Multi-robot Systems Based on Nonlinear Model Predictive Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Leader%20Allocation%20in%20Multi-robot%20Systems%20Based%20on%20Nonlinear%20Model%20Predictive%20Control&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Tavares,%20Augusto%20de%20Holanda%20B.%20M.&rft.date=2020-05-01&rft.volume=98&rft.issue=2&rft.spage=359&rft.epage=376&rft.pages=359-376&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-019-01064-4&rft_dat=%3Cgale_proqu%3EA725560049%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266190336&rft_id=info:pmid/&rft_galeid=A725560049&rfr_iscdi=true