Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint

Based on a series of stress rupture tests at 620 °C under 110 to 170 MPa and at 650 °C under 80 to 110 MPa, the relationship between the stress and rupture time was obtained to evaluate the long-term performance of the welded joint (WJ). At 620 °C, the stress rupture occurred in the base metal of 9 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2019-10, Vol.50 (10), p.4652-4664
Hauptverfasser: Ding, Kai, Qiao, Shangfei, Liu, Shuping, Zhao, Bingge, Huo, Xin, Li, Xiaohong, Gao, Yulai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4664
container_issue 10
container_start_page 4652
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 50
creator Ding, Kai
Qiao, Shangfei
Liu, Shuping
Zhao, Bingge
Huo, Xin
Li, Xiaohong
Gao, Yulai
description Based on a series of stress rupture tests at 620 °C under 110 to 170 MPa and at 650 °C under 80 to 110 MPa, the relationship between the stress and rupture time was obtained to evaluate the long-term performance of the welded joint (WJ). At 620 °C, the stress rupture occurred in the base metal of 9 pct Cr steel (9 pct Cr-BM), with the stress ranging from 130 to 170 MPa, yet the failure shifted to the heat-affected zone (HAZ) of 9 pct Cr steel (9 pct Cr-HAZ) with the stress ranging from 110 to 120 MPa. This failure behavior was observed at 650 °C with the turning point of 110 MPa. In particular, a ductile-to-brittle transition was determined when the rupture location shifted from 9 pct Cr-BM to 9 pct Cr-HAZ. Moreover, both the Laves phase adjacent to the M 23 C 6 and the independent phases could be detected in the 9 pct Cr-HAZ after the stress rupture test, while only M 23 C 6 -type carbides could be found in the 9 pct Cr-BM. The appearance of the microhardness turning point and the formation of the Laves phase in the 9 pct Cr-HAZ are considered as the crucial factors resulting in the transition of the failure mode.
doi_str_mv 10.1007/s11661-019-05372-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2266189252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266189252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e1272a1355619e53dc3c359be035f79667ab313f680a51bc1e3faf18a0086ec93</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRiMEEqVwAVaWWIf6p3aSJSoUioqooIil5bpj6ipxiu0suA1n4WS4BIkdqxnNvG9Gell2TvAlwbgYBUKEIDkmVY45K2iOD7IB4WOWk2qMD1OPC5ZzQdlxdhLCFuOEMjHIuqmydecBLb1ywUbbOvQAeqOcDQ1qDXqOHkJAT90u7rEFeNP6RjkN-23cAJo53TqokaB8VH19LnREE59ykGbXNgTb2Fp59Ar1GtbovrUunmZHRtUBzn7rMHuZ3iwnd_n88XY2uZrnmpU85kBoQRVhnAtSAWdrzTTj1Qow46aohCjUihFmRIkVJytNgBllSKkwLgXoig2zi_7uzrfvHYQot23nXXopKU3CyopymijaU9q3IXgwcudto_yHJFju9cper0zO5I9eiVOI9aGQYPcG_u_0P6lvMoR9Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266189252</pqid></control><display><type>article</type><title>Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint</title><source>Springer Online Journals</source><creator>Ding, Kai ; Qiao, Shangfei ; Liu, Shuping ; Zhao, Bingge ; Huo, Xin ; Li, Xiaohong ; Gao, Yulai</creator><creatorcontrib>Ding, Kai ; Qiao, Shangfei ; Liu, Shuping ; Zhao, Bingge ; Huo, Xin ; Li, Xiaohong ; Gao, Yulai</creatorcontrib><description>Based on a series of stress rupture tests at 620 °C under 110 to 170 MPa and at 650 °C under 80 to 110 MPa, the relationship between the stress and rupture time was obtained to evaluate the long-term performance of the welded joint (WJ). At 620 °C, the stress rupture occurred in the base metal of 9 pct Cr steel (9 pct Cr-BM), with the stress ranging from 130 to 170 MPa, yet the failure shifted to the heat-affected zone (HAZ) of 9 pct Cr steel (9 pct Cr-HAZ) with the stress ranging from 110 to 120 MPa. This failure behavior was observed at 650 °C with the turning point of 110 MPa. In particular, a ductile-to-brittle transition was determined when the rupture location shifted from 9 pct Cr-BM to 9 pct Cr-HAZ. Moreover, both the Laves phase adjacent to the M 23 C 6 and the independent phases could be detected in the 9 pct Cr-HAZ after the stress rupture test, while only M 23 C 6 -type carbides could be found in the 9 pct Cr-BM. The appearance of the microhardness turning point and the formation of the Laves phase in the 9 pct Cr-HAZ are considered as the crucial factors resulting in the transition of the failure mode.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-019-05372-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Base metal ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium steels ; Dissimilar material joining ; Ductile-brittle transition ; Failure modes ; Fracture mechanics ; Heat affected zone ; Heat treating ; Laves phase ; Materials Science ; Metallic Materials ; Microhardness ; Nanotechnology ; Nickel ; Nickel base alloys ; Rupture tests ; Structural Materials ; Superalloys ; Surfaces and Interfaces ; Thin Films ; Welded joints</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-10, Vol.50 (10), p.4652-4664</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e1272a1355619e53dc3c359be035f79667ab313f680a51bc1e3faf18a0086ec93</citedby><cites>FETCH-LOGICAL-c385t-e1272a1355619e53dc3c359be035f79667ab313f680a51bc1e3faf18a0086ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-019-05372-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-019-05372-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ding, Kai</creatorcontrib><creatorcontrib>Qiao, Shangfei</creatorcontrib><creatorcontrib>Liu, Shuping</creatorcontrib><creatorcontrib>Zhao, Bingge</creatorcontrib><creatorcontrib>Huo, Xin</creatorcontrib><creatorcontrib>Li, Xiaohong</creatorcontrib><creatorcontrib>Gao, Yulai</creatorcontrib><title>Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Based on a series of stress rupture tests at 620 °C under 110 to 170 MPa and at 650 °C under 80 to 110 MPa, the relationship between the stress and rupture time was obtained to evaluate the long-term performance of the welded joint (WJ). At 620 °C, the stress rupture occurred in the base metal of 9 pct Cr steel (9 pct Cr-BM), with the stress ranging from 130 to 170 MPa, yet the failure shifted to the heat-affected zone (HAZ) of 9 pct Cr steel (9 pct Cr-HAZ) with the stress ranging from 110 to 120 MPa. This failure behavior was observed at 650 °C with the turning point of 110 MPa. In particular, a ductile-to-brittle transition was determined when the rupture location shifted from 9 pct Cr-BM to 9 pct Cr-HAZ. Moreover, both the Laves phase adjacent to the M 23 C 6 and the independent phases could be detected in the 9 pct Cr-HAZ after the stress rupture test, while only M 23 C 6 -type carbides could be found in the 9 pct Cr-BM. The appearance of the microhardness turning point and the formation of the Laves phase in the 9 pct Cr-HAZ are considered as the crucial factors resulting in the transition of the failure mode.</description><subject>Base metal</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium steels</subject><subject>Dissimilar material joining</subject><subject>Ductile-brittle transition</subject><subject>Failure modes</subject><subject>Fracture mechanics</subject><subject>Heat affected zone</subject><subject>Heat treating</subject><subject>Laves phase</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Rupture tests</subject><subject>Structural Materials</subject><subject>Superalloys</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Welded joints</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1OwzAQRiMEEqVwAVaWWIf6p3aSJSoUioqooIil5bpj6ipxiu0suA1n4WS4BIkdqxnNvG9Gell2TvAlwbgYBUKEIDkmVY45K2iOD7IB4WOWk2qMD1OPC5ZzQdlxdhLCFuOEMjHIuqmydecBLb1ywUbbOvQAeqOcDQ1qDXqOHkJAT90u7rEFeNP6RjkN-23cAJo53TqokaB8VH19LnREE59ykGbXNgTb2Fp59Ar1GtbovrUunmZHRtUBzn7rMHuZ3iwnd_n88XY2uZrnmpU85kBoQRVhnAtSAWdrzTTj1Qow46aohCjUihFmRIkVJytNgBllSKkwLgXoig2zi_7uzrfvHYQot23nXXopKU3CyopymijaU9q3IXgwcudto_yHJFju9cper0zO5I9eiVOI9aGQYPcG_u_0P6lvMoR9Tw</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Ding, Kai</creator><creator>Qiao, Shangfei</creator><creator>Liu, Shuping</creator><creator>Zhao, Bingge</creator><creator>Huo, Xin</creator><creator>Li, Xiaohong</creator><creator>Gao, Yulai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20191015</creationdate><title>Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint</title><author>Ding, Kai ; Qiao, Shangfei ; Liu, Shuping ; Zhao, Bingge ; Huo, Xin ; Li, Xiaohong ; Gao, Yulai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e1272a1355619e53dc3c359be035f79667ab313f680a51bc1e3faf18a0086ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Base metal</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium steels</topic><topic>Dissimilar material joining</topic><topic>Ductile-brittle transition</topic><topic>Failure modes</topic><topic>Fracture mechanics</topic><topic>Heat affected zone</topic><topic>Heat treating</topic><topic>Laves phase</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Rupture tests</topic><topic>Structural Materials</topic><topic>Superalloys</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Kai</creatorcontrib><creatorcontrib>Qiao, Shangfei</creatorcontrib><creatorcontrib>Liu, Shuping</creatorcontrib><creatorcontrib>Zhao, Bingge</creatorcontrib><creatorcontrib>Huo, Xin</creatorcontrib><creatorcontrib>Li, Xiaohong</creatorcontrib><creatorcontrib>Gao, Yulai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Kai</au><au>Qiao, Shangfei</au><au>Liu, Shuping</au><au>Zhao, Bingge</au><au>Huo, Xin</au><au>Li, Xiaohong</au><au>Gao, Yulai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2019-10-15</date><risdate>2019</risdate><volume>50</volume><issue>10</issue><spage>4652</spage><epage>4664</epage><pages>4652-4664</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Based on a series of stress rupture tests at 620 °C under 110 to 170 MPa and at 650 °C under 80 to 110 MPa, the relationship between the stress and rupture time was obtained to evaluate the long-term performance of the welded joint (WJ). At 620 °C, the stress rupture occurred in the base metal of 9 pct Cr steel (9 pct Cr-BM), with the stress ranging from 130 to 170 MPa, yet the failure shifted to the heat-affected zone (HAZ) of 9 pct Cr steel (9 pct Cr-HAZ) with the stress ranging from 110 to 120 MPa. This failure behavior was observed at 650 °C with the turning point of 110 MPa. In particular, a ductile-to-brittle transition was determined when the rupture location shifted from 9 pct Cr-BM to 9 pct Cr-HAZ. Moreover, both the Laves phase adjacent to the M 23 C 6 and the independent phases could be detected in the 9 pct Cr-HAZ after the stress rupture test, while only M 23 C 6 -type carbides could be found in the 9 pct Cr-BM. The appearance of the microhardness turning point and the formation of the Laves phase in the 9 pct Cr-HAZ are considered as the crucial factors resulting in the transition of the failure mode.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-019-05372-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-10, Vol.50 (10), p.4652-4664
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2266189252
source Springer Online Journals
subjects Base metal
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium steels
Dissimilar material joining
Ductile-brittle transition
Failure modes
Fracture mechanics
Heat affected zone
Heat treating
Laves phase
Materials Science
Metallic Materials
Microhardness
Nanotechnology
Nickel
Nickel base alloys
Rupture tests
Structural Materials
Superalloys
Surfaces and Interfaces
Thin Films
Welded joints
title Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20Transition%20Mechanism%20of%20Stress%20Rupture%20Performance%20of%20the%20Inconel%20625/9%C2%A0Pct%20Cr%20Steel%20Dissimilar%20Welded%20Joint&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Ding,%20Kai&rft.date=2019-10-15&rft.volume=50&rft.issue=10&rft.spage=4652&rft.epage=4664&rft.pages=4652-4664&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-019-05372-0&rft_dat=%3Cproquest_cross%3E2266189252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266189252&rft_id=info:pmid/&rfr_iscdi=true