Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition
In this paper, an r -dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the r rightmost characteristic roots of the DDE with a user-specified tolerance of ε . Initially, the DDE is approximated by an N -di...
Gespeichert in:
Veröffentlicht in: | International journal of dynamics and control 2019-09, Vol.7 (3), p.1065-1083 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1083 |
---|---|
container_issue | 3 |
container_start_page | 1065 |
container_title | International journal of dynamics and control |
container_volume | 7 |
creator | Chakraborty, Sayan Kandala, Shanti Swaroop Vyasarayani, C. P. |
description | In this paper, an
r
-dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the
r
rightmost characteristic roots of the DDE with a user-specified tolerance of
ε
. Initially, the DDE is approximated by an
N
-dimensional set of ordinary differential equations using Galerkin approximations. However, only
N
c
(
<
N
)
eigenvalues of this
N
-dimensional model match (with a tolerance of
ε
) the rightmost characteristic roots of the DDEs. By performing numerical simulations, an empirical relationship for
N
c
is obtained as a function of
N
and
ε
for a scalar DDE with multiple delays. Using eigenvalue decomposition, an
r
(
=
N
c
)
dimensional model is constructed. First, an appropriate
r
is chosen, and then the minimum value of
N
at which at least
r
roots converge is selected. For each of the test cases considered, the time and frequency responses of the original DDE obtained using direct numerical simulations are compared with the corresponding
r
- and
N
-dimensional systems. By judiciously selecting
r
, solutions of the ROM and DDE match closely. Next, an
r
-dimensional model is developed for an experimental 3D hovercraft in the presence of delay. The time responses of the
r
-dimensional model compared favorably with the experimental results. |
doi_str_mv | 10.1007/s40435-019-00510-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2265800376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265800376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2343-ab6f42081ac4ab6658a2f0d084c412babb7bf2889c77265426f872ee24034d123</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwFPFcnk7RNj7L4BQuCKHgLaZuWrm1Tk1bcf29qRW-eZoZ5n_l4CTlncMkA0isvQPA4ApZFADGDiB-RFbIsjjDJ5PFvLl9Pycb7PQAgE4AiW5H9kymnwpTUutK4EDtbmrZt-praio5NZ2io9YH6gx9N5-nk516tW-Pemp7qYXD2s-n02NjeU92X1DS16T90O81oYbvB-mbunpGTSrfebH7imrzc3jxv76Pd493D9noXFcgFj3SeVAJBMl2IkCex1FhBCVIUgmGu8zzNK5QyK9IUk1hgUskUjUEBXJQM-ZpcLHPDZe-T8aPa28n1YaXCAEgAniZBhYuqcNZ7Zyo1uPCGOygGarZVLbaqYKv6tlXxAPEF8kHc18b9jf6H-gJZQHvK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265800376</pqid></control><display><type>article</type><title>Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chakraborty, Sayan ; Kandala, Shanti Swaroop ; Vyasarayani, C. P.</creator><creatorcontrib>Chakraborty, Sayan ; Kandala, Shanti Swaroop ; Vyasarayani, C. P.</creatorcontrib><description>In this paper, an
r
-dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the
r
rightmost characteristic roots of the DDE with a user-specified tolerance of
ε
. Initially, the DDE is approximated by an
N
-dimensional set of ordinary differential equations using Galerkin approximations. However, only
N
c
(
<
N
)
eigenvalues of this
N
-dimensional model match (with a tolerance of
ε
) the rightmost characteristic roots of the DDEs. By performing numerical simulations, an empirical relationship for
N
c
is obtained as a function of
N
and
ε
for a scalar DDE with multiple delays. Using eigenvalue decomposition, an
r
(
=
N
c
)
dimensional model is constructed. First, an appropriate
r
is chosen, and then the minimum value of
N
at which at least
r
roots converge is selected. For each of the test cases considered, the time and frequency responses of the original DDE obtained using direct numerical simulations are compared with the corresponding
r
- and
N
-dimensional systems. By judiciously selecting
r
, solutions of the ROM and DDE match closely. Next, an
r
-dimensional model is developed for an experimental 3D hovercraft in the presence of delay. The time responses of the
r
-dimensional model compared favorably with the experimental results.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-019-00510-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Computer simulation ; Control ; Control and Systems Theory ; Decomposition ; Differential equations ; Dimensional tolerances ; Dynamical Systems ; Eigenvalues ; Engineering ; Galerkin method ; Ground effect machines ; Mathematical models ; Ordinary differential equations ; Reduced order models ; Roots ; Three dimensional models ; Time delay systems ; Vibration</subject><ispartof>International journal of dynamics and control, 2019-09, Vol.7 (3), p.1065-1083</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2343-ab6f42081ac4ab6658a2f0d084c412babb7bf2889c77265426f872ee24034d123</citedby><cites>FETCH-LOGICAL-c2343-ab6f42081ac4ab6658a2f0d084c412babb7bf2889c77265426f872ee24034d123</cites><orcidid>0000-0003-2723-6059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-019-00510-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-019-00510-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chakraborty, Sayan</creatorcontrib><creatorcontrib>Kandala, Shanti Swaroop</creatorcontrib><creatorcontrib>Vyasarayani, C. P.</creatorcontrib><title>Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this paper, an
r
-dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the
r
rightmost characteristic roots of the DDE with a user-specified tolerance of
ε
. Initially, the DDE is approximated by an
N
-dimensional set of ordinary differential equations using Galerkin approximations. However, only
N
c
(
<
N
)
eigenvalues of this
N
-dimensional model match (with a tolerance of
ε
) the rightmost characteristic roots of the DDEs. By performing numerical simulations, an empirical relationship for
N
c
is obtained as a function of
N
and
ε
for a scalar DDE with multiple delays. Using eigenvalue decomposition, an
r
(
=
N
c
)
dimensional model is constructed. First, an appropriate
r
is chosen, and then the minimum value of
N
at which at least
r
roots converge is selected. For each of the test cases considered, the time and frequency responses of the original DDE obtained using direct numerical simulations are compared with the corresponding
r
- and
N
-dimensional systems. By judiciously selecting
r
, solutions of the ROM and DDE match closely. Next, an
r
-dimensional model is developed for an experimental 3D hovercraft in the presence of delay. The time responses of the
r
-dimensional model compared favorably with the experimental results.</description><subject>Complexity</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Decomposition</subject><subject>Differential equations</subject><subject>Dimensional tolerances</subject><subject>Dynamical Systems</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Galerkin method</subject><subject>Ground effect machines</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Reduced order models</subject><subject>Roots</subject><subject>Three dimensional models</subject><subject>Time delay systems</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKz7BzwFPFcnk7RNj7L4BQuCKHgLaZuWrm1Tk1bcf29qRW-eZoZ5n_l4CTlncMkA0isvQPA4ApZFADGDiB-RFbIsjjDJ5PFvLl9Pycb7PQAgE4AiW5H9kymnwpTUutK4EDtbmrZt-praio5NZ2io9YH6gx9N5-nk516tW-Pemp7qYXD2s-n02NjeU92X1DS16T90O81oYbvB-mbunpGTSrfebH7imrzc3jxv76Pd493D9noXFcgFj3SeVAJBMl2IkCex1FhBCVIUgmGu8zzNK5QyK9IUk1hgUskUjUEBXJQM-ZpcLHPDZe-T8aPa28n1YaXCAEgAniZBhYuqcNZ7Zyo1uPCGOygGarZVLbaqYKv6tlXxAPEF8kHc18b9jf6H-gJZQHvK</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Chakraborty, Sayan</creator><creator>Kandala, Shanti Swaroop</creator><creator>Vyasarayani, C. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2723-6059</orcidid></search><sort><creationdate>20190901</creationdate><title>Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition</title><author>Chakraborty, Sayan ; Kandala, Shanti Swaroop ; Vyasarayani, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2343-ab6f42081ac4ab6658a2f0d084c412babb7bf2889c77265426f872ee24034d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complexity</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Decomposition</topic><topic>Differential equations</topic><topic>Dimensional tolerances</topic><topic>Dynamical Systems</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Galerkin method</topic><topic>Ground effect machines</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Reduced order models</topic><topic>Roots</topic><topic>Three dimensional models</topic><topic>Time delay systems</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Sayan</creatorcontrib><creatorcontrib>Kandala, Shanti Swaroop</creatorcontrib><creatorcontrib>Vyasarayani, C. P.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Sayan</au><au>Kandala, Shanti Swaroop</au><au>Vyasarayani, C. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>7</volume><issue>3</issue><spage>1065</spage><epage>1083</epage><pages>1065-1083</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this paper, an
r
-dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the
r
rightmost characteristic roots of the DDE with a user-specified tolerance of
ε
. Initially, the DDE is approximated by an
N
-dimensional set of ordinary differential equations using Galerkin approximations. However, only
N
c
(
<
N
)
eigenvalues of this
N
-dimensional model match (with a tolerance of
ε
) the rightmost characteristic roots of the DDEs. By performing numerical simulations, an empirical relationship for
N
c
is obtained as a function of
N
and
ε
for a scalar DDE with multiple delays. Using eigenvalue decomposition, an
r
(
=
N
c
)
dimensional model is constructed. First, an appropriate
r
is chosen, and then the minimum value of
N
at which at least
r
roots converge is selected. For each of the test cases considered, the time and frequency responses of the original DDE obtained using direct numerical simulations are compared with the corresponding
r
- and
N
-dimensional systems. By judiciously selecting
r
, solutions of the ROM and DDE match closely. Next, an
r
-dimensional model is developed for an experimental 3D hovercraft in the presence of delay. The time responses of the
r
-dimensional model compared favorably with the experimental results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-019-00510-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2723-6059</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-268X |
ispartof | International journal of dynamics and control, 2019-09, Vol.7 (3), p.1065-1083 |
issn | 2195-268X 2195-2698 |
language | eng |
recordid | cdi_proquest_journals_2265800376 |
source | SpringerLink Journals - AutoHoldings |
subjects | Complexity Computer simulation Control Control and Systems Theory Decomposition Differential equations Dimensional tolerances Dynamical Systems Eigenvalues Engineering Galerkin method Ground effect machines Mathematical models Ordinary differential equations Reduced order models Roots Three dimensional models Time delay systems Vibration |
title | Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20ordered%20modelling%20of%20time%20delay%20systems%20using%20galerkin%20approximations%20and%20eigenvalue%20decomposition&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Chakraborty,%20Sayan&rft.date=2019-09-01&rft.volume=7&rft.issue=3&rft.spage=1065&rft.epage=1083&rft.pages=1065-1083&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-019-00510-3&rft_dat=%3Cproquest_cross%3E2265800376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265800376&rft_id=info:pmid/&rfr_iscdi=true |