Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition

In this paper, an r -dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the r rightmost characteristic roots of the DDE with a user-specified tolerance of ε . Initially, the DDE is approximated by an N -di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2019-09, Vol.7 (3), p.1065-1083
Hauptverfasser: Chakraborty, Sayan, Kandala, Shanti Swaroop, Vyasarayani, C. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1083
container_issue 3
container_start_page 1065
container_title International journal of dynamics and control
container_volume 7
creator Chakraborty, Sayan
Kandala, Shanti Swaroop
Vyasarayani, C. P.
description In this paper, an r -dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the r rightmost characteristic roots of the DDE with a user-specified tolerance of ε . Initially, the DDE is approximated by an N -dimensional set of ordinary differential equations using Galerkin approximations. However, only N c ( < N ) eigenvalues of this N -dimensional model match (with a tolerance of ε ) the rightmost characteristic roots of the DDEs. By performing numerical simulations, an empirical relationship for N c is obtained as a function of N and ε for a scalar DDE with multiple delays. Using eigenvalue decomposition, an r ( = N c ) dimensional model is constructed. First, an appropriate r is chosen, and then the minimum value of N at which at least r roots converge is selected. For each of the test cases considered, the time and frequency responses of the original DDE obtained using direct numerical simulations are compared with the corresponding r - and N -dimensional systems. By judiciously selecting r , solutions of the ROM and DDE match closely. Next, an r -dimensional model is developed for an experimental 3D hovercraft in the presence of delay. The time responses of the r -dimensional model compared favorably with the experimental results.
doi_str_mv 10.1007/s40435-019-00510-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2265800376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265800376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2343-ab6f42081ac4ab6658a2f0d084c412babb7bf2889c77265426f872ee24034d123</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwFPFcnk7RNj7L4BQuCKHgLaZuWrm1Tk1bcf29qRW-eZoZ5n_l4CTlncMkA0isvQPA4ApZFADGDiB-RFbIsjjDJ5PFvLl9Pycb7PQAgE4AiW5H9kymnwpTUutK4EDtbmrZt-praio5NZ2io9YH6gx9N5-nk516tW-Pemp7qYXD2s-n02NjeU92X1DS16T90O81oYbvB-mbunpGTSrfebH7imrzc3jxv76Pd493D9noXFcgFj3SeVAJBMl2IkCex1FhBCVIUgmGu8zzNK5QyK9IUk1hgUskUjUEBXJQM-ZpcLHPDZe-T8aPa28n1YaXCAEgAniZBhYuqcNZ7Zyo1uPCGOygGarZVLbaqYKv6tlXxAPEF8kHc18b9jf6H-gJZQHvK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265800376</pqid></control><display><type>article</type><title>Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chakraborty, Sayan ; Kandala, Shanti Swaroop ; Vyasarayani, C. P.</creator><creatorcontrib>Chakraborty, Sayan ; Kandala, Shanti Swaroop ; Vyasarayani, C. P.</creatorcontrib><description>In this paper, an r -dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the r rightmost characteristic roots of the DDE with a user-specified tolerance of ε . Initially, the DDE is approximated by an N -dimensional set of ordinary differential equations using Galerkin approximations. However, only N c ( &lt; N ) eigenvalues of this N -dimensional model match (with a tolerance of ε ) the rightmost characteristic roots of the DDEs. By performing numerical simulations, an empirical relationship for N c is obtained as a function of N and ε for a scalar DDE with multiple delays. Using eigenvalue decomposition, an r ( = N c ) dimensional model is constructed. First, an appropriate r is chosen, and then the minimum value of N at which at least r roots converge is selected. For each of the test cases considered, the time and frequency responses of the original DDE obtained using direct numerical simulations are compared with the corresponding r - and N -dimensional systems. By judiciously selecting r , solutions of the ROM and DDE match closely. Next, an r -dimensional model is developed for an experimental 3D hovercraft in the presence of delay. The time responses of the r -dimensional model compared favorably with the experimental results.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-019-00510-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complexity ; Computer simulation ; Control ; Control and Systems Theory ; Decomposition ; Differential equations ; Dimensional tolerances ; Dynamical Systems ; Eigenvalues ; Engineering ; Galerkin method ; Ground effect machines ; Mathematical models ; Ordinary differential equations ; Reduced order models ; Roots ; Three dimensional models ; Time delay systems ; Vibration</subject><ispartof>International journal of dynamics and control, 2019-09, Vol.7 (3), p.1065-1083</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2343-ab6f42081ac4ab6658a2f0d084c412babb7bf2889c77265426f872ee24034d123</citedby><cites>FETCH-LOGICAL-c2343-ab6f42081ac4ab6658a2f0d084c412babb7bf2889c77265426f872ee24034d123</cites><orcidid>0000-0003-2723-6059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-019-00510-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-019-00510-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chakraborty, Sayan</creatorcontrib><creatorcontrib>Kandala, Shanti Swaroop</creatorcontrib><creatorcontrib>Vyasarayani, C. P.</creatorcontrib><title>Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this paper, an r -dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the r rightmost characteristic roots of the DDE with a user-specified tolerance of ε . Initially, the DDE is approximated by an N -dimensional set of ordinary differential equations using Galerkin approximations. However, only N c ( &lt; N ) eigenvalues of this N -dimensional model match (with a tolerance of ε ) the rightmost characteristic roots of the DDEs. By performing numerical simulations, an empirical relationship for N c is obtained as a function of N and ε for a scalar DDE with multiple delays. Using eigenvalue decomposition, an r ( = N c ) dimensional model is constructed. First, an appropriate r is chosen, and then the minimum value of N at which at least r roots converge is selected. For each of the test cases considered, the time and frequency responses of the original DDE obtained using direct numerical simulations are compared with the corresponding r - and N -dimensional systems. By judiciously selecting r , solutions of the ROM and DDE match closely. Next, an r -dimensional model is developed for an experimental 3D hovercraft in the presence of delay. The time responses of the r -dimensional model compared favorably with the experimental results.</description><subject>Complexity</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Decomposition</subject><subject>Differential equations</subject><subject>Dimensional tolerances</subject><subject>Dynamical Systems</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Galerkin method</subject><subject>Ground effect machines</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Reduced order models</subject><subject>Roots</subject><subject>Three dimensional models</subject><subject>Time delay systems</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKz7BzwFPFcnk7RNj7L4BQuCKHgLaZuWrm1Tk1bcf29qRW-eZoZ5n_l4CTlncMkA0isvQPA4ApZFADGDiB-RFbIsjjDJ5PFvLl9Pycb7PQAgE4AiW5H9kymnwpTUutK4EDtbmrZt-praio5NZ2io9YH6gx9N5-nk516tW-Pemp7qYXD2s-n02NjeU92X1DS16T90O81oYbvB-mbunpGTSrfebH7imrzc3jxv76Pd493D9noXFcgFj3SeVAJBMl2IkCex1FhBCVIUgmGu8zzNK5QyK9IUk1hgUskUjUEBXJQM-ZpcLHPDZe-T8aPa28n1YaXCAEgAniZBhYuqcNZ7Zyo1uPCGOygGarZVLbaqYKv6tlXxAPEF8kHc18b9jf6H-gJZQHvK</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Chakraborty, Sayan</creator><creator>Kandala, Shanti Swaroop</creator><creator>Vyasarayani, C. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2723-6059</orcidid></search><sort><creationdate>20190901</creationdate><title>Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition</title><author>Chakraborty, Sayan ; Kandala, Shanti Swaroop ; Vyasarayani, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2343-ab6f42081ac4ab6658a2f0d084c412babb7bf2889c77265426f872ee24034d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complexity</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Decomposition</topic><topic>Differential equations</topic><topic>Dimensional tolerances</topic><topic>Dynamical Systems</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Galerkin method</topic><topic>Ground effect machines</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Reduced order models</topic><topic>Roots</topic><topic>Three dimensional models</topic><topic>Time delay systems</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Sayan</creatorcontrib><creatorcontrib>Kandala, Shanti Swaroop</creatorcontrib><creatorcontrib>Vyasarayani, C. P.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Sayan</au><au>Kandala, Shanti Swaroop</au><au>Vyasarayani, C. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>7</volume><issue>3</issue><spage>1065</spage><epage>1083</epage><pages>1065-1083</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this paper, an r -dimensional reduced-order model (ROM) for infinite-dimensional delay differential equations (DDEs) is developed. The eigenvalues of the ROM match the r rightmost characteristic roots of the DDE with a user-specified tolerance of ε . Initially, the DDE is approximated by an N -dimensional set of ordinary differential equations using Galerkin approximations. However, only N c ( &lt; N ) eigenvalues of this N -dimensional model match (with a tolerance of ε ) the rightmost characteristic roots of the DDEs. By performing numerical simulations, an empirical relationship for N c is obtained as a function of N and ε for a scalar DDE with multiple delays. Using eigenvalue decomposition, an r ( = N c ) dimensional model is constructed. First, an appropriate r is chosen, and then the minimum value of N at which at least r roots converge is selected. For each of the test cases considered, the time and frequency responses of the original DDE obtained using direct numerical simulations are compared with the corresponding r - and N -dimensional systems. By judiciously selecting r , solutions of the ROM and DDE match closely. Next, an r -dimensional model is developed for an experimental 3D hovercraft in the presence of delay. The time responses of the r -dimensional model compared favorably with the experimental results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-019-00510-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2723-6059</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2019-09, Vol.7 (3), p.1065-1083
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2265800376
source SpringerLink Journals - AutoHoldings
subjects Complexity
Computer simulation
Control
Control and Systems Theory
Decomposition
Differential equations
Dimensional tolerances
Dynamical Systems
Eigenvalues
Engineering
Galerkin method
Ground effect machines
Mathematical models
Ordinary differential equations
Reduced order models
Roots
Three dimensional models
Time delay systems
Vibration
title Reduced ordered modelling of time delay systems using galerkin approximations and eigenvalue decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20ordered%20modelling%20of%20time%20delay%20systems%20using%20galerkin%20approximations%20and%20eigenvalue%20decomposition&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Chakraborty,%20Sayan&rft.date=2019-09-01&rft.volume=7&rft.issue=3&rft.spage=1065&rft.epage=1083&rft.pages=1065-1083&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-019-00510-3&rft_dat=%3Cproquest_cross%3E2265800376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265800376&rft_id=info:pmid/&rfr_iscdi=true