Atomic Layer Deposition as a General Method Turns any 3D‐Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty

3D‐printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D‐printing material precursor. Particularly, for phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-07, Vol.9 (26), p.n/a
Hauptverfasser: Browne, Michelle P., Plutnar, Jan, Pourrahimi, Amir Masoud, Sofer, Zdenek, Pumera, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Advanced energy materials
container_volume 9
creator Browne, Michelle P.
Plutnar, Jan
Pourrahimi, Amir Masoud
Sofer, Zdenek
Pumera, Martin
description 3D‐printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D‐printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as‐printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D‐printed electrodes. However, the as‐printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the Ångström/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D‐printing to create active electrodes. To illustrate the proof‐of‐concept, TiO2 is deposited by ALD onto stainless steel 3D‐printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D‐printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as‐printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications. A new approach for fabricating desired, active electrodes for electrochemical energy applications involving metal 3D‐printing and atomic layer deposition (ALD) is presented. By combining 3D‐printing and ALD, tailored electrodes with conformed catalyst layers on 3D‐printed bases with any shape/porosity can be achieved. Stainless steel 3D‐printed electrodes are modified with TiO2 by ALD and their photoelectrochemical properties are investigated to illustrate proof‐of‐concept.
doi_str_mv 10.1002/aenm.201900994
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2265607655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265607655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3704-f289cf78b983d777890b2cad313d7690f93c5a5304b4d3cfa0f33c9a1605ab9d3</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEElXpymyJOeUc55_ZqrYUpBYqUebIcS5qqiQutiuUjZGRz8gnwVVQGbnF93zvd5af511TGFOA4FZg24wDoByA8_DMG9CYhn6chnB-6llw6Y2M2YGrkFNgbOB9TqxqKkmWokNNZrhXprKVaokwRJAFtqhFTVZot6ogm4Nu3XXbETb7_vha66q1WJB5jdJqVSBxWjlshqbSbjAVVtSdsXeuM0he7KHonIest8oq7Cm5xaYytrvyLkpRGxz9nkPv9X6-mT74y-fF43Sy9CVLIPTLIOWyTNKcp6xIkiTlkAdSFIw6GXMoOZORiBiEeVgwWQooGZNc0BgikfOCDb2bfu9eq7cDGpvtlPuWezILgjiKIYmjyLnGvUtqZYzGMtvrqhG6yyhkx8CzY-DZKXAH8B54r2rs_nFnk_nT6o_9ARyphkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265607655</pqid></control><display><type>article</type><title>Atomic Layer Deposition as a General Method Turns any 3D‐Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Browne, Michelle P. ; Plutnar, Jan ; Pourrahimi, Amir Masoud ; Sofer, Zdenek ; Pumera, Martin</creator><creatorcontrib>Browne, Michelle P. ; Plutnar, Jan ; Pourrahimi, Amir Masoud ; Sofer, Zdenek ; Pumera, Martin</creatorcontrib><description>3D‐printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D‐printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as‐printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D‐printed electrodes. However, the as‐printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the Ångström/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D‐printing to create active electrodes. To illustrate the proof‐of‐concept, TiO2 is deposited by ALD onto stainless steel 3D‐printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D‐printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as‐printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications. A new approach for fabricating desired, active electrodes for electrochemical energy applications involving metal 3D‐printing and atomic layer deposition (ALD) is presented. By combining 3D‐printing and ALD, tailored electrodes with conformed catalyst layers on 3D‐printed bases with any shape/porosity can be achieved. Stainless steel 3D‐printed electrodes are modified with TiO2 by ALD and their photoelectrochemical properties are investigated to illustrate proof‐of‐concept.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201900994</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3D‐printing ; atomic layer deposition ; Atomic layer epitaxy ; Electrodes ; Oxidation ; photoelectrochemical water splitting ; Porosity ; Rapid prototyping ; Stability ; Stainless steels ; Thickness ; Three dimensional printing ; TiO2 ; Titanium dioxide</subject><ispartof>Advanced energy materials, 2019-07, Vol.9 (26), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3704-f289cf78b983d777890b2cad313d7690f93c5a5304b4d3cfa0f33c9a1605ab9d3</citedby><cites>FETCH-LOGICAL-c3704-f289cf78b983d777890b2cad313d7690f93c5a5304b4d3cfa0f33c9a1605ab9d3</cites><orcidid>0000-0001-5846-2951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201900994$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201900994$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Browne, Michelle P.</creatorcontrib><creatorcontrib>Plutnar, Jan</creatorcontrib><creatorcontrib>Pourrahimi, Amir Masoud</creatorcontrib><creatorcontrib>Sofer, Zdenek</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><title>Atomic Layer Deposition as a General Method Turns any 3D‐Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty</title><title>Advanced energy materials</title><description>3D‐printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D‐printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as‐printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D‐printed electrodes. However, the as‐printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the Ångström/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D‐printing to create active electrodes. To illustrate the proof‐of‐concept, TiO2 is deposited by ALD onto stainless steel 3D‐printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D‐printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as‐printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications. A new approach for fabricating desired, active electrodes for electrochemical energy applications involving metal 3D‐printing and atomic layer deposition (ALD) is presented. By combining 3D‐printing and ALD, tailored electrodes with conformed catalyst layers on 3D‐printed bases with any shape/porosity can be achieved. Stainless steel 3D‐printed electrodes are modified with TiO2 by ALD and their photoelectrochemical properties are investigated to illustrate proof‐of‐concept.</description><subject>3D‐printing</subject><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Electrodes</subject><subject>Oxidation</subject><subject>photoelectrochemical water splitting</subject><subject>Porosity</subject><subject>Rapid prototyping</subject><subject>Stability</subject><subject>Stainless steels</subject><subject>Thickness</subject><subject>Three dimensional printing</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxSMEElXpymyJOeUc55_ZqrYUpBYqUebIcS5qqiQutiuUjZGRz8gnwVVQGbnF93zvd5af511TGFOA4FZg24wDoByA8_DMG9CYhn6chnB-6llw6Y2M2YGrkFNgbOB9TqxqKkmWokNNZrhXprKVaokwRJAFtqhFTVZot6ogm4Nu3XXbETb7_vha66q1WJB5jdJqVSBxWjlshqbSbjAVVtSdsXeuM0he7KHonIest8oq7Cm5xaYytrvyLkpRGxz9nkPv9X6-mT74y-fF43Sy9CVLIPTLIOWyTNKcp6xIkiTlkAdSFIw6GXMoOZORiBiEeVgwWQooGZNc0BgikfOCDb2bfu9eq7cDGpvtlPuWezILgjiKIYmjyLnGvUtqZYzGMtvrqhG6yyhkx8CzY-DZKXAH8B54r2rs_nFnk_nT6o_9ARyphkk</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Browne, Michelle P.</creator><creator>Plutnar, Jan</creator><creator>Pourrahimi, Amir Masoud</creator><creator>Sofer, Zdenek</creator><creator>Pumera, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid></search><sort><creationdate>20190701</creationdate><title>Atomic Layer Deposition as a General Method Turns any 3D‐Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty</title><author>Browne, Michelle P. ; Plutnar, Jan ; Pourrahimi, Amir Masoud ; Sofer, Zdenek ; Pumera, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3704-f289cf78b983d777890b2cad313d7690f93c5a5304b4d3cfa0f33c9a1605ab9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D‐printing</topic><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Electrodes</topic><topic>Oxidation</topic><topic>photoelectrochemical water splitting</topic><topic>Porosity</topic><topic>Rapid prototyping</topic><topic>Stability</topic><topic>Stainless steels</topic><topic>Thickness</topic><topic>Three dimensional printing</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Browne, Michelle P.</creatorcontrib><creatorcontrib>Plutnar, Jan</creatorcontrib><creatorcontrib>Pourrahimi, Amir Masoud</creatorcontrib><creatorcontrib>Sofer, Zdenek</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Browne, Michelle P.</au><au>Plutnar, Jan</au><au>Pourrahimi, Amir Masoud</au><au>Sofer, Zdenek</au><au>Pumera, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Layer Deposition as a General Method Turns any 3D‐Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty</atitle><jtitle>Advanced energy materials</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>26</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>3D‐printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D‐printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as‐printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D‐printed electrodes. However, the as‐printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the Ångström/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D‐printing to create active electrodes. To illustrate the proof‐of‐concept, TiO2 is deposited by ALD onto stainless steel 3D‐printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D‐printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as‐printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications. A new approach for fabricating desired, active electrodes for electrochemical energy applications involving metal 3D‐printing and atomic layer deposition (ALD) is presented. By combining 3D‐printing and ALD, tailored electrodes with conformed catalyst layers on 3D‐printed bases with any shape/porosity can be achieved. Stainless steel 3D‐printed electrodes are modified with TiO2 by ALD and their photoelectrochemical properties are investigated to illustrate proof‐of‐concept.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201900994</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-07, Vol.9 (26), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2265607655
source Wiley Online Library Journals Frontfile Complete
subjects 3D‐printing
atomic layer deposition
Atomic layer epitaxy
Electrodes
Oxidation
photoelectrochemical water splitting
Porosity
Rapid prototyping
Stability
Stainless steels
Thickness
Three dimensional printing
TiO2
Titanium dioxide
title Atomic Layer Deposition as a General Method Turns any 3D‐Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Layer%20Deposition%20as%20a%20General%20Method%20Turns%20any%203D%E2%80%90Printed%20Electrode%20into%20a%20Desired%20Catalyst:%20Case%20Study%20in%20Photoelectrochemisty&rft.jtitle=Advanced%20energy%20materials&rft.au=Browne,%20Michelle%20P.&rft.date=2019-07-01&rft.volume=9&rft.issue=26&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201900994&rft_dat=%3Cproquest_cross%3E2265607655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265607655&rft_id=info:pmid/&rfr_iscdi=true