Predicting Climate‐Driven Coastlines With a Simple and Efficient Multiscale Model

Ocean‐basin‐scale climate variability produces shifts in wave climates and water levels affecting the coastlines of the basin. Here we present a hybrid shoreline change—foredune erosion model (A COupled CrOss‐shOre, loNg‐shorE, and foreDune evolution model, COCOONED) intended to inform coastal plann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Earth surface 2019-06, Vol.124 (6), p.1596-1624
Hauptverfasser: Antolínez, José A. A., Méndez, Fernando J., Anderson, Dylan, Ruggiero, Peter, Kaminsky, George M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1624
container_issue 6
container_start_page 1596
container_title Journal of geophysical research. Earth surface
container_volume 124
creator Antolínez, José A. A.
Méndez, Fernando J.
Anderson, Dylan
Ruggiero, Peter
Kaminsky, George M.
description Ocean‐basin‐scale climate variability produces shifts in wave climates and water levels affecting the coastlines of the basin. Here we present a hybrid shoreline change—foredune erosion model (A COupled CrOss‐shOre, loNg‐shorE, and foreDune evolution model, COCOONED) intended to inform coastal planning and adaptation. COCOONED accounts for coupled longshore and cross‐shore processes at different timescales, including sequencing and clustering of storm events, seasonal, interannual, and decadal oscillations by incorporating the effects of integrated varying wave action and water levels for coastal hazard assessment. COCOONED is able to adapt shoreline change rates in response to interactions between longshore transport, cross‐shore transport, water level variations, and foredune erosion. COCOONED allows for the spatial and temporal extension of survey data using global data sets of waves and water levels for assessing the behavior of the shoreline at multiple time and spatial scales. As a case study, we train the model in the period 2004–2014 (11 years) with seasonal topographic beach profile surveys from the North Beach Sub‐cell (NBSC) of the Columbia River Littoral Cell (Washington, USA). We explore the shoreline response and foredune erosion along 40 km of beach at several timescales during the period 1979–2014 (35 years), revealing an accretional trend producing reorientation of the beach, cross‐shore accretional, and erosional periods through time (breathing) and alternating beach rotations that are correlated with climate indices. Key Points A new coastal evolution model (COCOONED) combines effects from longshore and cross‐shore transport, dune erosion, and sediment supply COCOONED evolves shorelines based on climate variability in both waves and water levels COCOONED is applied in Grays Harbor County, Washington, USA, for 35 years and reveals shoreline responses at multiple scales of variability
doi_str_mv 10.1029/2018JF004790
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2265594514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265594514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4115-c83a798f7917221ce57dfe26de0caf664d3f13da7971e4c81f41eda64df9bc393</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWLQ3HyDg1Wom2X85ytpWS4tiFY9LTCaast2tyVbpzUfwGX0SIxXx5Fxm-ObHfMxHyBGwU2BcnnEGxWTEWJJLtkN6HDI5kAxg93dmYp_0Q1iwWEWUgPfI_MajcbpzzRMta7dUHX6-f1x494oNLVsVuto1GOiD656ponO3XNVIVWPo0FqnHTYdna3rzgWt4mLWGqwPyZ5VdcD-Tz8g96PhXXk5mF6Pr8rz6UAlAOlAF0LlsrC5hJxz0JjmxiLPDDKtbJYlRlgQJjI5YKILsAmgUVG38lELKQ7I8fbuyrcvawxdtWjXvomWFedZmsokhSRSJ1tK-zYEj7Za-fin31TAqu_kqr_JRVxs8TdX4-ZftpqMb0ccmEjFF6Fxb3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265594514</pqid></control><display><type>article</type><title>Predicting Climate‐Driven Coastlines With a Simple and Efficient Multiscale Model</title><source>Wiley Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Antolínez, José A. A. ; Méndez, Fernando J. ; Anderson, Dylan ; Ruggiero, Peter ; Kaminsky, George M.</creator><creatorcontrib>Antolínez, José A. A. ; Méndez, Fernando J. ; Anderson, Dylan ; Ruggiero, Peter ; Kaminsky, George M.</creatorcontrib><description>Ocean‐basin‐scale climate variability produces shifts in wave climates and water levels affecting the coastlines of the basin. Here we present a hybrid shoreline change—foredune erosion model (A COupled CrOss‐shOre, loNg‐shorE, and foreDune evolution model, COCOONED) intended to inform coastal planning and adaptation. COCOONED accounts for coupled longshore and cross‐shore processes at different timescales, including sequencing and clustering of storm events, seasonal, interannual, and decadal oscillations by incorporating the effects of integrated varying wave action and water levels for coastal hazard assessment. COCOONED is able to adapt shoreline change rates in response to interactions between longshore transport, cross‐shore transport, water level variations, and foredune erosion. COCOONED allows for the spatial and temporal extension of survey data using global data sets of waves and water levels for assessing the behavior of the shoreline at multiple time and spatial scales. As a case study, we train the model in the period 2004–2014 (11 years) with seasonal topographic beach profile surveys from the North Beach Sub‐cell (NBSC) of the Columbia River Littoral Cell (Washington, USA). We explore the shoreline response and foredune erosion along 40 km of beach at several timescales during the period 1979–2014 (35 years), revealing an accretional trend producing reorientation of the beach, cross‐shore accretional, and erosional periods through time (breathing) and alternating beach rotations that are correlated with climate indices. Key Points A new coastal evolution model (COCOONED) combines effects from longshore and cross‐shore transport, dune erosion, and sediment supply COCOONED evolves shorelines based on climate variability in both waves and water levels COCOONED is applied in Grays Harbor County, Washington, USA, for 35 years and reveals shoreline responses at multiple scales of variability</description><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1029/2018JF004790</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Adaptation ; and sediment supply ; Beach erosion ; Beach profiles ; Beaches ; Biological evolution ; Climate ; Climate models ; Climate variability ; Climatic indexes ; Clustering ; Coastal climates ; Coastal erosion ; Coastal hazards ; coastal response model ; Coastal waters ; Coastal zone management ; Coasts ; dune erosion ; Erosion ; Erosion models ; Evolution ; Hazard assessment ; hybrid modeling ; Interannual oscillation ; Littoral environments ; longshore and cross‐shore processes ; modeling multiple spatial and temporal scales ; Oscillations ; Polls &amp; surveys ; Rivers ; Shorelines ; Storms ; Surveying ; Surveys ; Transport ; Water levels ; Wave action ; waves and varying water levels effects</subject><ispartof>Journal of geophysical research. Earth surface, 2019-06, Vol.124 (6), p.1596-1624</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4115-c83a798f7917221ce57dfe26de0caf664d3f13da7971e4c81f41eda64df9bc393</citedby><cites>FETCH-LOGICAL-a4115-c83a798f7917221ce57dfe26de0caf664d3f13da7971e4c81f41eda64df9bc393</cites><orcidid>0000-0002-6618-9729 ; 0000-0002-5005-1100 ; 0000-0001-7425-9953 ; 0000-0002-0694-4817 ; 0000-0003-4053-4085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JF004790$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JF004790$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Antolínez, José A. A.</creatorcontrib><creatorcontrib>Méndez, Fernando J.</creatorcontrib><creatorcontrib>Anderson, Dylan</creatorcontrib><creatorcontrib>Ruggiero, Peter</creatorcontrib><creatorcontrib>Kaminsky, George M.</creatorcontrib><title>Predicting Climate‐Driven Coastlines With a Simple and Efficient Multiscale Model</title><title>Journal of geophysical research. Earth surface</title><description>Ocean‐basin‐scale climate variability produces shifts in wave climates and water levels affecting the coastlines of the basin. Here we present a hybrid shoreline change—foredune erosion model (A COupled CrOss‐shOre, loNg‐shorE, and foreDune evolution model, COCOONED) intended to inform coastal planning and adaptation. COCOONED accounts for coupled longshore and cross‐shore processes at different timescales, including sequencing and clustering of storm events, seasonal, interannual, and decadal oscillations by incorporating the effects of integrated varying wave action and water levels for coastal hazard assessment. COCOONED is able to adapt shoreline change rates in response to interactions between longshore transport, cross‐shore transport, water level variations, and foredune erosion. COCOONED allows for the spatial and temporal extension of survey data using global data sets of waves and water levels for assessing the behavior of the shoreline at multiple time and spatial scales. As a case study, we train the model in the period 2004–2014 (11 years) with seasonal topographic beach profile surveys from the North Beach Sub‐cell (NBSC) of the Columbia River Littoral Cell (Washington, USA). We explore the shoreline response and foredune erosion along 40 km of beach at several timescales during the period 1979–2014 (35 years), revealing an accretional trend producing reorientation of the beach, cross‐shore accretional, and erosional periods through time (breathing) and alternating beach rotations that are correlated with climate indices. Key Points A new coastal evolution model (COCOONED) combines effects from longshore and cross‐shore transport, dune erosion, and sediment supply COCOONED evolves shorelines based on climate variability in both waves and water levels COCOONED is applied in Grays Harbor County, Washington, USA, for 35 years and reveals shoreline responses at multiple scales of variability</description><subject>Adaptation</subject><subject>and sediment supply</subject><subject>Beach erosion</subject><subject>Beach profiles</subject><subject>Beaches</subject><subject>Biological evolution</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Climatic indexes</subject><subject>Clustering</subject><subject>Coastal climates</subject><subject>Coastal erosion</subject><subject>Coastal hazards</subject><subject>coastal response model</subject><subject>Coastal waters</subject><subject>Coastal zone management</subject><subject>Coasts</subject><subject>dune erosion</subject><subject>Erosion</subject><subject>Erosion models</subject><subject>Evolution</subject><subject>Hazard assessment</subject><subject>hybrid modeling</subject><subject>Interannual oscillation</subject><subject>Littoral environments</subject><subject>longshore and cross‐shore processes</subject><subject>modeling multiple spatial and temporal scales</subject><subject>Oscillations</subject><subject>Polls &amp; surveys</subject><subject>Rivers</subject><subject>Shorelines</subject><subject>Storms</subject><subject>Surveying</subject><subject>Surveys</subject><subject>Transport</subject><subject>Water levels</subject><subject>Wave action</subject><subject>waves and varying water levels effects</subject><issn>2169-9003</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWLQ3HyDg1Wom2X85ytpWS4tiFY9LTCaast2tyVbpzUfwGX0SIxXx5Fxm-ObHfMxHyBGwU2BcnnEGxWTEWJJLtkN6HDI5kAxg93dmYp_0Q1iwWEWUgPfI_MajcbpzzRMta7dUHX6-f1x494oNLVsVuto1GOiD656ponO3XNVIVWPo0FqnHTYdna3rzgWt4mLWGqwPyZ5VdcD-Tz8g96PhXXk5mF6Pr8rz6UAlAOlAF0LlsrC5hJxz0JjmxiLPDDKtbJYlRlgQJjI5YKILsAmgUVG38lELKQ7I8fbuyrcvawxdtWjXvomWFedZmsokhSRSJ1tK-zYEj7Za-fin31TAqu_kqr_JRVxs8TdX4-ZftpqMb0ccmEjFF6Fxb3I</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Antolínez, José A. A.</creator><creator>Méndez, Fernando J.</creator><creator>Anderson, Dylan</creator><creator>Ruggiero, Peter</creator><creator>Kaminsky, George M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6618-9729</orcidid><orcidid>https://orcid.org/0000-0002-5005-1100</orcidid><orcidid>https://orcid.org/0000-0001-7425-9953</orcidid><orcidid>https://orcid.org/0000-0002-0694-4817</orcidid><orcidid>https://orcid.org/0000-0003-4053-4085</orcidid></search><sort><creationdate>201906</creationdate><title>Predicting Climate‐Driven Coastlines With a Simple and Efficient Multiscale Model</title><author>Antolínez, José A. A. ; Méndez, Fernando J. ; Anderson, Dylan ; Ruggiero, Peter ; Kaminsky, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4115-c83a798f7917221ce57dfe26de0caf664d3f13da7971e4c81f41eda64df9bc393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>and sediment supply</topic><topic>Beach erosion</topic><topic>Beach profiles</topic><topic>Beaches</topic><topic>Biological evolution</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Climatic indexes</topic><topic>Clustering</topic><topic>Coastal climates</topic><topic>Coastal erosion</topic><topic>Coastal hazards</topic><topic>coastal response model</topic><topic>Coastal waters</topic><topic>Coastal zone management</topic><topic>Coasts</topic><topic>dune erosion</topic><topic>Erosion</topic><topic>Erosion models</topic><topic>Evolution</topic><topic>Hazard assessment</topic><topic>hybrid modeling</topic><topic>Interannual oscillation</topic><topic>Littoral environments</topic><topic>longshore and cross‐shore processes</topic><topic>modeling multiple spatial and temporal scales</topic><topic>Oscillations</topic><topic>Polls &amp; surveys</topic><topic>Rivers</topic><topic>Shorelines</topic><topic>Storms</topic><topic>Surveying</topic><topic>Surveys</topic><topic>Transport</topic><topic>Water levels</topic><topic>Wave action</topic><topic>waves and varying water levels effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antolínez, José A. A.</creatorcontrib><creatorcontrib>Méndez, Fernando J.</creatorcontrib><creatorcontrib>Anderson, Dylan</creatorcontrib><creatorcontrib>Ruggiero, Peter</creatorcontrib><creatorcontrib>Kaminsky, George M.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Earth surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antolínez, José A. A.</au><au>Méndez, Fernando J.</au><au>Anderson, Dylan</au><au>Ruggiero, Peter</au><au>Kaminsky, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Climate‐Driven Coastlines With a Simple and Efficient Multiscale Model</atitle><jtitle>Journal of geophysical research. Earth surface</jtitle><date>2019-06</date><risdate>2019</risdate><volume>124</volume><issue>6</issue><spage>1596</spage><epage>1624</epage><pages>1596-1624</pages><issn>2169-9003</issn><eissn>2169-9011</eissn><abstract>Ocean‐basin‐scale climate variability produces shifts in wave climates and water levels affecting the coastlines of the basin. Here we present a hybrid shoreline change—foredune erosion model (A COupled CrOss‐shOre, loNg‐shorE, and foreDune evolution model, COCOONED) intended to inform coastal planning and adaptation. COCOONED accounts for coupled longshore and cross‐shore processes at different timescales, including sequencing and clustering of storm events, seasonal, interannual, and decadal oscillations by incorporating the effects of integrated varying wave action and water levels for coastal hazard assessment. COCOONED is able to adapt shoreline change rates in response to interactions between longshore transport, cross‐shore transport, water level variations, and foredune erosion. COCOONED allows for the spatial and temporal extension of survey data using global data sets of waves and water levels for assessing the behavior of the shoreline at multiple time and spatial scales. As a case study, we train the model in the period 2004–2014 (11 years) with seasonal topographic beach profile surveys from the North Beach Sub‐cell (NBSC) of the Columbia River Littoral Cell (Washington, USA). We explore the shoreline response and foredune erosion along 40 km of beach at several timescales during the period 1979–2014 (35 years), revealing an accretional trend producing reorientation of the beach, cross‐shore accretional, and erosional periods through time (breathing) and alternating beach rotations that are correlated with climate indices. Key Points A new coastal evolution model (COCOONED) combines effects from longshore and cross‐shore transport, dune erosion, and sediment supply COCOONED evolves shorelines based on climate variability in both waves and water levels COCOONED is applied in Grays Harbor County, Washington, USA, for 35 years and reveals shoreline responses at multiple scales of variability</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JF004790</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6618-9729</orcidid><orcidid>https://orcid.org/0000-0002-5005-1100</orcidid><orcidid>https://orcid.org/0000-0001-7425-9953</orcidid><orcidid>https://orcid.org/0000-0002-0694-4817</orcidid><orcidid>https://orcid.org/0000-0003-4053-4085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9003
ispartof Journal of geophysical research. Earth surface, 2019-06, Vol.124 (6), p.1596-1624
issn 2169-9003
2169-9011
language eng
recordid cdi_proquest_journals_2265594514
source Wiley Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects Adaptation
and sediment supply
Beach erosion
Beach profiles
Beaches
Biological evolution
Climate
Climate models
Climate variability
Climatic indexes
Clustering
Coastal climates
Coastal erosion
Coastal hazards
coastal response model
Coastal waters
Coastal zone management
Coasts
dune erosion
Erosion
Erosion models
Evolution
Hazard assessment
hybrid modeling
Interannual oscillation
Littoral environments
longshore and cross‐shore processes
modeling multiple spatial and temporal scales
Oscillations
Polls & surveys
Rivers
Shorelines
Storms
Surveying
Surveys
Transport
Water levels
Wave action
waves and varying water levels effects
title Predicting Climate‐Driven Coastlines With a Simple and Efficient Multiscale Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Climate%E2%80%90Driven%20Coastlines%20With%20a%20Simple%20and%20Efficient%20Multiscale%20Model&rft.jtitle=Journal%20of%20geophysical%20research.%20Earth%20surface&rft.au=Antol%C3%ADnez,%20Jos%C3%A9%20A.%20A.&rft.date=2019-06&rft.volume=124&rft.issue=6&rft.spage=1596&rft.epage=1624&rft.pages=1596-1624&rft.issn=2169-9003&rft.eissn=2169-9011&rft_id=info:doi/10.1029/2018JF004790&rft_dat=%3Cproquest_cross%3E2265594514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265594514&rft_id=info:pmid/&rfr_iscdi=true