The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species

Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2019-08, Vol.42 (8), p.2448-2457
Hauptverfasser: Taylor, Tyeen C., Smith, Marielle N., Slot, Martijn, Feeley, Kenneth J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2457
container_issue 8
container_start_page 2448
container_title Plant, cell and environment
container_volume 42
creator Taylor, Tyeen C.
Smith, Marielle N.
Slot, Martijn
Feeley, Kenneth J.
description Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species. That isoprene emission enhances the thermal tolerance of photosynthesis is supported by decades of experimental physiology. But whether isoprene differentiates the thermal niches of emitting from non‐emitting species remains untested in the real world. We provide evidence that isoprene‐emitting tropical woody plant species photosynthesize to higher maximum temperatures, and over a broader thermal range, compared with co‐occurring, non‐emitting species. Even accounting for the carbon cost of isoprene emissions, we find no substantial trade‐offs associated with this high‐temperature advantage.
doi_str_mv 10.1111/pce.13564
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2265592427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265592427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4544-3bbf5239b8703b1a9d87b135c2872967ff21b94d43dbdc0249f10b995ae82cda3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWj8O_gEJePKwmq9tNkcpfkFBD3pekuyEprSbmKRI_73RqjfnMsPw8AzzInROyTWtdRMtXFPeTsUemlA-bRtOBNlHE0IFaaRU9Agd57wkpC6kOkRHnCjFJekmKLwuAFsdtfVli0vAsPYF-xxighHw4J2DOhWvC2RcKhwXoYS8HetcvMUF1hGSLpsEOEGOYcwVDA6XFKK3eoXjSo8F5wjWQz5FB06vMpz99BP0dn_3Onts5s8PT7PbeWNFK0TDjXEt48p0knBDtRo6aeqLlnWSqal0jlGjxCD4YAZLmFCOEqNUq6FjdtD8BF3uvDGF9w3k0i_DJo31ZM_YtG0VE0xW6mpH2RRyTuD6mPxap21PSf8VbV-j7b-jrezFj3Fj1jD8kb9ZVuBmB3z4FWz_N_Uvs7ud8hNpv4TJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265592427</pqid></control><display><type>article</type><title>The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Taylor, Tyeen C. ; Smith, Marielle N. ; Slot, Martijn ; Feeley, Kenneth J.</creator><creatorcontrib>Taylor, Tyeen C. ; Smith, Marielle N. ; Slot, Martijn ; Feeley, Kenneth J.</creatorcontrib><description>Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species. That isoprene emission enhances the thermal tolerance of photosynthesis is supported by decades of experimental physiology. But whether isoprene differentiates the thermal niches of emitting from non‐emitting species remains untested in the real world. We provide evidence that isoprene‐emitting tropical woody plant species photosynthesize to higher maximum temperatures, and over a broader thermal range, compared with co‐occurring, non‐emitting species. Even accounting for the carbon cost of isoprene emissions, we find no substantial trade‐offs associated with this high‐temperature advantage.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.13564</identifier><identifier>PMID: 30993708</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acclimatization ; Butadienes - metabolism ; Carbon ; Carbon - metabolism ; Climate change ; Conductance ; Ecosystem ; Emissions ; Emissions control ; Emitters ; Experimental research ; Forests ; Global Warming ; Hemiterpenes - metabolism ; Herbivores ; High temperature ; Isoprene ; isoprene emission ; leaf biochemistry ; Lianas ; Niches ; Photosynthesis ; photosynthetic temperature response ; plant functional traits ; Plant species ; Resistance ; Species ; Species classification ; Stomata ; Stomatal conductance ; Temperature ; Temperature effects ; Temperature tolerance ; Thermal response ; thermal tolerance ; Tolerances ; Trees - metabolism ; Trees - physiology ; Tropical Climate ; tropical forest ; Tropical plants</subject><ispartof>Plant, cell and environment, 2019-08, Vol.42 (8), p.2448-2457</ispartof><rights>2019 John Wiley &amp; Sons Ltd</rights><rights>2019 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4544-3bbf5239b8703b1a9d87b135c2872967ff21b94d43dbdc0249f10b995ae82cda3</citedby><cites>FETCH-LOGICAL-c4544-3bbf5239b8703b1a9d87b135c2872967ff21b94d43dbdc0249f10b995ae82cda3</cites><orcidid>0000-0002-5558-1792 ; 0000-0002-0926-098X ; 0000-0003-2323-331X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.13564$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.13564$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30993708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Tyeen C.</creatorcontrib><creatorcontrib>Smith, Marielle N.</creatorcontrib><creatorcontrib>Slot, Martijn</creatorcontrib><creatorcontrib>Feeley, Kenneth J.</creatorcontrib><title>The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species. That isoprene emission enhances the thermal tolerance of photosynthesis is supported by decades of experimental physiology. But whether isoprene differentiates the thermal niches of emitting from non‐emitting species remains untested in the real world. We provide evidence that isoprene‐emitting tropical woody plant species photosynthesize to higher maximum temperatures, and over a broader thermal range, compared with co‐occurring, non‐emitting species. Even accounting for the carbon cost of isoprene emissions, we find no substantial trade‐offs associated with this high‐temperature advantage.</description><subject>Acclimatization</subject><subject>Butadienes - metabolism</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Climate change</subject><subject>Conductance</subject><subject>Ecosystem</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Emitters</subject><subject>Experimental research</subject><subject>Forests</subject><subject>Global Warming</subject><subject>Hemiterpenes - metabolism</subject><subject>Herbivores</subject><subject>High temperature</subject><subject>Isoprene</subject><subject>isoprene emission</subject><subject>leaf biochemistry</subject><subject>Lianas</subject><subject>Niches</subject><subject>Photosynthesis</subject><subject>photosynthetic temperature response</subject><subject>plant functional traits</subject><subject>Plant species</subject><subject>Resistance</subject><subject>Species</subject><subject>Species classification</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature tolerance</subject><subject>Thermal response</subject><subject>thermal tolerance</subject><subject>Tolerances</subject><subject>Trees - metabolism</subject><subject>Trees - physiology</subject><subject>Tropical Climate</subject><subject>tropical forest</subject><subject>Tropical plants</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMoWj8O_gEJePKwmq9tNkcpfkFBD3pekuyEprSbmKRI_73RqjfnMsPw8AzzInROyTWtdRMtXFPeTsUemlA-bRtOBNlHE0IFaaRU9Agd57wkpC6kOkRHnCjFJekmKLwuAFsdtfVli0vAsPYF-xxighHw4J2DOhWvC2RcKhwXoYS8HetcvMUF1hGSLpsEOEGOYcwVDA6XFKK3eoXjSo8F5wjWQz5FB06vMpz99BP0dn_3Onts5s8PT7PbeWNFK0TDjXEt48p0knBDtRo6aeqLlnWSqal0jlGjxCD4YAZLmFCOEqNUq6FjdtD8BF3uvDGF9w3k0i_DJo31ZM_YtG0VE0xW6mpH2RRyTuD6mPxap21PSf8VbV-j7b-jrezFj3Fj1jD8kb9ZVuBmB3z4FWz_N_Uvs7ud8hNpv4TJ</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Taylor, Tyeen C.</creator><creator>Smith, Marielle N.</creator><creator>Slot, Martijn</creator><creator>Feeley, Kenneth J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5558-1792</orcidid><orcidid>https://orcid.org/0000-0002-0926-098X</orcidid><orcidid>https://orcid.org/0000-0003-2323-331X</orcidid></search><sort><creationdate>201908</creationdate><title>The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species</title><author>Taylor, Tyeen C. ; Smith, Marielle N. ; Slot, Martijn ; Feeley, Kenneth J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4544-3bbf5239b8703b1a9d87b135c2872967ff21b94d43dbdc0249f10b995ae82cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acclimatization</topic><topic>Butadienes - metabolism</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Climate change</topic><topic>Conductance</topic><topic>Ecosystem</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Emitters</topic><topic>Experimental research</topic><topic>Forests</topic><topic>Global Warming</topic><topic>Hemiterpenes - metabolism</topic><topic>Herbivores</topic><topic>High temperature</topic><topic>Isoprene</topic><topic>isoprene emission</topic><topic>leaf biochemistry</topic><topic>Lianas</topic><topic>Niches</topic><topic>Photosynthesis</topic><topic>photosynthetic temperature response</topic><topic>plant functional traits</topic><topic>Plant species</topic><topic>Resistance</topic><topic>Species</topic><topic>Species classification</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature tolerance</topic><topic>Thermal response</topic><topic>thermal tolerance</topic><topic>Tolerances</topic><topic>Trees - metabolism</topic><topic>Trees - physiology</topic><topic>Tropical Climate</topic><topic>tropical forest</topic><topic>Tropical plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Tyeen C.</creatorcontrib><creatorcontrib>Smith, Marielle N.</creatorcontrib><creatorcontrib>Slot, Martijn</creatorcontrib><creatorcontrib>Feeley, Kenneth J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Tyeen C.</au><au>Smith, Marielle N.</au><au>Slot, Martijn</au><au>Feeley, Kenneth J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2019-08</date><risdate>2019</risdate><volume>42</volume><issue>8</issue><spage>2448</spage><epage>2457</epage><pages>2448-2457</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species. That isoprene emission enhances the thermal tolerance of photosynthesis is supported by decades of experimental physiology. But whether isoprene differentiates the thermal niches of emitting from non‐emitting species remains untested in the real world. We provide evidence that isoprene‐emitting tropical woody plant species photosynthesize to higher maximum temperatures, and over a broader thermal range, compared with co‐occurring, non‐emitting species. Even accounting for the carbon cost of isoprene emissions, we find no substantial trade‐offs associated with this high‐temperature advantage.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30993708</pmid><doi>10.1111/pce.13564</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5558-1792</orcidid><orcidid>https://orcid.org/0000-0002-0926-098X</orcidid><orcidid>https://orcid.org/0000-0003-2323-331X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2019-08, Vol.42 (8), p.2448-2457
issn 0140-7791
1365-3040
language eng
recordid cdi_proquest_journals_2265592427
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acclimatization
Butadienes - metabolism
Carbon
Carbon - metabolism
Climate change
Conductance
Ecosystem
Emissions
Emissions control
Emitters
Experimental research
Forests
Global Warming
Hemiterpenes - metabolism
Herbivores
High temperature
Isoprene
isoprene emission
leaf biochemistry
Lianas
Niches
Photosynthesis
photosynthetic temperature response
plant functional traits
Plant species
Resistance
Species
Species classification
Stomata
Stomatal conductance
Temperature
Temperature effects
Temperature tolerance
Thermal response
thermal tolerance
Tolerances
Trees - metabolism
Trees - physiology
Tropical Climate
tropical forest
Tropical plants
title The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20capacity%20to%20emit%20isoprene%20differentiates%20the%20photosynthetic%20temperature%20responses%20of%20tropical%20plant%20species&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Taylor,%20Tyeen%20C.&rft.date=2019-08&rft.volume=42&rft.issue=8&rft.spage=2448&rft.epage=2457&rft.pages=2448-2457&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.13564&rft_dat=%3Cproquest_cross%3E2265592427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265592427&rft_id=info:pmid/30993708&rfr_iscdi=true