Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery

High‐rate capability has become an important feature for energy storage devices, but it is often accompanied with a significant reduction in energy density. Therefore, developing an energy storage technology that combines high‐rate capability with high energy density is a great challenge for next‐ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-07, Vol.29 (28), p.n/a
Hauptverfasser: Luo, Shaojuan, Xie, Luoyuan, Han, Fei, Wei, Wei, Huang, Yang, Zhang, Han, Zhu, Minshen, Schmidt, Oliver G., Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Advanced functional materials
container_volume 29
creator Luo, Shaojuan
Xie, Luoyuan
Han, Fei
Wei, Wei
Huang, Yang
Zhang, Han
Zhu, Minshen
Schmidt, Oliver G.
Wang, Lei
description High‐rate capability has become an important feature for energy storage devices, but it is often accompanied with a significant reduction in energy density. Therefore, developing an energy storage technology that combines high‐rate capability with high energy density is a great challenge for next‐generation electronic devices. Here, parallel circuitry is constructed at the nanoscale to lower the resistance for ion and electron transport that largely determines the rate performance. The parallel circuitry is constructed through intertwining continuous carbon nanotubes with an interpenetrating conductive assembly based on hierarchically layered MXene (Ti3C2Tx ) functionalized by KMnO4 (MnOx @Ti3C2Tx ). The assembly shows ultrafast rate capability, e.g., maintaining 50% capacity when the current density increases from 0.1 to 10 A g−1. Investigations of the kinetics and charge storage mechanisms confirm the efficiency of the designed parallel circuitry in improving rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into individual MnOx @Ti3C2Tx flakes in the assembly. The flexible MnOx @Ti3C2Tx based electrode endows zinc ion batteries with outstanding mechanical robustness and good power delivering performance. The paradigm presented here paves a new way for designing electrodes with high‐rate capability toward next‐generation energy storage technologies. The reported nanoscale parallel circuitry is based on an interpenetrating conductive assembly through intertwining carbon nanotubes with manganese decorated multilayered MXene, which achieves an ultrahigh rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into the assembly. The assembled zinc ion batteries exhibit outstanding flexibility, mechanical robustness and power delivering performance.
doi_str_mv 10.1002/adfm.201901336
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2265581020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265581020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3566-72c50a29e32e036728a39869b4b3e2b3ca0aede7d1c0050319cd3461ee5086e33</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEqWwMltiTrm2GycZ20BppfIzgIRYIse5Ka5Sp9gJJRuPwDPyJKQqKiPTPcP5visdzzunMKAA7FLmxWrAgMZAORcHXo8KKnwOLDrcZ_p87J04twSgYciHPa-9k6ZySpZIHqSVZYklSbRVja5tS8bSYU4qQ2amRrtGg7WVtTYLklQmb1St35GMnMNVVrakqCyZlPihs84mTU6mevH6_fn1UG3QkhdtFJl1rrGsO1l76h0VsnR49nv73tPk-jGZ-vP7m1kymvuKB0L4IVMBSBYjZwhchCySPI5EnA0zjizjSoLEHMOcKoAAOI1VzoeCIgYQCeS8713svGtbvTXo6nRZNdZ0L1PGRBBEFBh0rcGupWzlnMUiXVu9krZNKaTbedPtvOl-3g6Id8BGl9j-005HV5PbP_YH1CGAMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265581020</pqid></control><display><type>article</type><title>Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery</title><source>Access via Wiley Online Library</source><creator>Luo, Shaojuan ; Xie, Luoyuan ; Han, Fei ; Wei, Wei ; Huang, Yang ; Zhang, Han ; Zhu, Minshen ; Schmidt, Oliver G. ; Wang, Lei</creator><creatorcontrib>Luo, Shaojuan ; Xie, Luoyuan ; Han, Fei ; Wei, Wei ; Huang, Yang ; Zhang, Han ; Zhu, Minshen ; Schmidt, Oliver G. ; Wang, Lei</creatorcontrib><description>High‐rate capability has become an important feature for energy storage devices, but it is often accompanied with a significant reduction in energy density. Therefore, developing an energy storage technology that combines high‐rate capability with high energy density is a great challenge for next‐generation electronic devices. Here, parallel circuitry is constructed at the nanoscale to lower the resistance for ion and electron transport that largely determines the rate performance. The parallel circuitry is constructed through intertwining continuous carbon nanotubes with an interpenetrating conductive assembly based on hierarchically layered MXene (Ti3C2Tx ) functionalized by KMnO4 (MnOx @Ti3C2Tx ). The assembly shows ultrafast rate capability, e.g., maintaining 50% capacity when the current density increases from 0.1 to 10 A g−1. Investigations of the kinetics and charge storage mechanisms confirm the efficiency of the designed parallel circuitry in improving rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into individual MnOx @Ti3C2Tx flakes in the assembly. The flexible MnOx @Ti3C2Tx based electrode endows zinc ion batteries with outstanding mechanical robustness and good power delivering performance. The paradigm presented here paves a new way for designing electrodes with high‐rate capability toward next‐generation energy storage technologies. The reported nanoscale parallel circuitry is based on an interpenetrating conductive assembly through intertwining carbon nanotubes with manganese decorated multilayered MXene, which achieves an ultrahigh rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into the assembly. The assembled zinc ion batteries exhibit outstanding flexibility, mechanical robustness and power delivering performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201901336</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Batteries ; Carbon nanotubes ; Circuits ; Electrodes ; Electron transport ; Electronic devices ; Energy storage ; flexible ; Flux density ; interpenetrating conductive assembly ; Materials science ; MXene ; nanoscale parallel circuitry ; Potassium permanganate ; Zinc ; zinc ion batteries</subject><ispartof>Advanced functional materials, 2019-07, Vol.29 (28), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3566-72c50a29e32e036728a39869b4b3e2b3ca0aede7d1c0050319cd3461ee5086e33</citedby><cites>FETCH-LOGICAL-c3566-72c50a29e32e036728a39869b4b3e2b3ca0aede7d1c0050319cd3461ee5086e33</cites><orcidid>0000-0001-5883-4962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201901336$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201901336$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Luo, Shaojuan</creatorcontrib><creatorcontrib>Xie, Luoyuan</creatorcontrib><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Huang, Yang</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Zhu, Minshen</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery</title><title>Advanced functional materials</title><description>High‐rate capability has become an important feature for energy storage devices, but it is often accompanied with a significant reduction in energy density. Therefore, developing an energy storage technology that combines high‐rate capability with high energy density is a great challenge for next‐generation electronic devices. Here, parallel circuitry is constructed at the nanoscale to lower the resistance for ion and electron transport that largely determines the rate performance. The parallel circuitry is constructed through intertwining continuous carbon nanotubes with an interpenetrating conductive assembly based on hierarchically layered MXene (Ti3C2Tx ) functionalized by KMnO4 (MnOx @Ti3C2Tx ). The assembly shows ultrafast rate capability, e.g., maintaining 50% capacity when the current density increases from 0.1 to 10 A g−1. Investigations of the kinetics and charge storage mechanisms confirm the efficiency of the designed parallel circuitry in improving rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into individual MnOx @Ti3C2Tx flakes in the assembly. The flexible MnOx @Ti3C2Tx based electrode endows zinc ion batteries with outstanding mechanical robustness and good power delivering performance. The paradigm presented here paves a new way for designing electrodes with high‐rate capability toward next‐generation energy storage technologies. The reported nanoscale parallel circuitry is based on an interpenetrating conductive assembly through intertwining carbon nanotubes with manganese decorated multilayered MXene, which achieves an ultrahigh rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into the assembly. The assembled zinc ion batteries exhibit outstanding flexibility, mechanical robustness and power delivering performance.</description><subject>Assembly</subject><subject>Batteries</subject><subject>Carbon nanotubes</subject><subject>Circuits</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Electronic devices</subject><subject>Energy storage</subject><subject>flexible</subject><subject>Flux density</subject><subject>interpenetrating conductive assembly</subject><subject>Materials science</subject><subject>MXene</subject><subject>nanoscale parallel circuitry</subject><subject>Potassium permanganate</subject><subject>Zinc</subject><subject>zinc ion batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEqWwMltiTrm2GycZ20BppfIzgIRYIse5Ka5Sp9gJJRuPwDPyJKQqKiPTPcP5visdzzunMKAA7FLmxWrAgMZAORcHXo8KKnwOLDrcZ_p87J04twSgYciHPa-9k6ZySpZIHqSVZYklSbRVja5tS8bSYU4qQ2amRrtGg7WVtTYLklQmb1St35GMnMNVVrakqCyZlPihs84mTU6mevH6_fn1UG3QkhdtFJl1rrGsO1l76h0VsnR49nv73tPk-jGZ-vP7m1kymvuKB0L4IVMBSBYjZwhchCySPI5EnA0zjizjSoLEHMOcKoAAOI1VzoeCIgYQCeS8713svGtbvTXo6nRZNdZ0L1PGRBBEFBh0rcGupWzlnMUiXVu9krZNKaTbedPtvOl-3g6Id8BGl9j-005HV5PbP_YH1CGAMQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Luo, Shaojuan</creator><creator>Xie, Luoyuan</creator><creator>Han, Fei</creator><creator>Wei, Wei</creator><creator>Huang, Yang</creator><creator>Zhang, Han</creator><creator>Zhu, Minshen</creator><creator>Schmidt, Oliver G.</creator><creator>Wang, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5883-4962</orcidid></search><sort><creationdate>20190701</creationdate><title>Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery</title><author>Luo, Shaojuan ; Xie, Luoyuan ; Han, Fei ; Wei, Wei ; Huang, Yang ; Zhang, Han ; Zhu, Minshen ; Schmidt, Oliver G. ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3566-72c50a29e32e036728a39869b4b3e2b3ca0aede7d1c0050319cd3461ee5086e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assembly</topic><topic>Batteries</topic><topic>Carbon nanotubes</topic><topic>Circuits</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Electronic devices</topic><topic>Energy storage</topic><topic>flexible</topic><topic>Flux density</topic><topic>interpenetrating conductive assembly</topic><topic>Materials science</topic><topic>MXene</topic><topic>nanoscale parallel circuitry</topic><topic>Potassium permanganate</topic><topic>Zinc</topic><topic>zinc ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Shaojuan</creatorcontrib><creatorcontrib>Xie, Luoyuan</creatorcontrib><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Huang, Yang</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Zhu, Minshen</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Shaojuan</au><au>Xie, Luoyuan</au><au>Han, Fei</au><au>Wei, Wei</au><au>Huang, Yang</au><au>Zhang, Han</au><au>Zhu, Minshen</au><au>Schmidt, Oliver G.</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery</atitle><jtitle>Advanced functional materials</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>29</volume><issue>28</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>High‐rate capability has become an important feature for energy storage devices, but it is often accompanied with a significant reduction in energy density. Therefore, developing an energy storage technology that combines high‐rate capability with high energy density is a great challenge for next‐generation electronic devices. Here, parallel circuitry is constructed at the nanoscale to lower the resistance for ion and electron transport that largely determines the rate performance. The parallel circuitry is constructed through intertwining continuous carbon nanotubes with an interpenetrating conductive assembly based on hierarchically layered MXene (Ti3C2Tx ) functionalized by KMnO4 (MnOx @Ti3C2Tx ). The assembly shows ultrafast rate capability, e.g., maintaining 50% capacity when the current density increases from 0.1 to 10 A g−1. Investigations of the kinetics and charge storage mechanisms confirm the efficiency of the designed parallel circuitry in improving rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into individual MnOx @Ti3C2Tx flakes in the assembly. The flexible MnOx @Ti3C2Tx based electrode endows zinc ion batteries with outstanding mechanical robustness and good power delivering performance. The paradigm presented here paves a new way for designing electrodes with high‐rate capability toward next‐generation energy storage technologies. The reported nanoscale parallel circuitry is based on an interpenetrating conductive assembly through intertwining carbon nanotubes with manganese decorated multilayered MXene, which achieves an ultrahigh rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into the assembly. The assembled zinc ion batteries exhibit outstanding flexibility, mechanical robustness and power delivering performance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201901336</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5883-4962</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-07, Vol.29 (28), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2265581020
source Access via Wiley Online Library
subjects Assembly
Batteries
Carbon nanotubes
Circuits
Electrodes
Electron transport
Electronic devices
Energy storage
flexible
Flux density
interpenetrating conductive assembly
Materials science
MXene
nanoscale parallel circuitry
Potassium permanganate
Zinc
zinc ion batteries
title Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High‐Power Zinc Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Parallel%20Circuitry%20Based%20on%20Interpenetrating%20Conductive%20Assembly%20for%20Flexible%20and%20High%E2%80%90Power%20Zinc%20Ion%20Battery&rft.jtitle=Advanced%20functional%20materials&rft.au=Luo,%20Shaojuan&rft.date=2019-07-01&rft.volume=29&rft.issue=28&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201901336&rft_dat=%3Cproquest_cross%3E2265581020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265581020&rft_id=info:pmid/&rfr_iscdi=true