Purification of Nickel Sulfate by Batch Cooling Crystallization

Cooling crystallization was successfully carried out in a batch cooling crystallizer from impure acidic solutions to recover nickel as nickel sulfate salt with three different cooling rates. The compositions of the solutions included impurities of sodium, magnesium, chloride, and sulfuric acid to mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2019-07, Vol.42 (7), p.1475-1480
Hauptverfasser: Han, Bing, Bøckman, Oluf, Wilson, Benjamin P., Lundström, Mari, Louhi-Kultanen, Marjatta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 7
container_start_page 1475
container_title Chemical engineering & technology
container_volume 42
creator Han, Bing
Bøckman, Oluf
Wilson, Benjamin P.
Lundström, Mari
Louhi-Kultanen, Marjatta
description Cooling crystallization was successfully carried out in a batch cooling crystallizer from impure acidic solutions to recover nickel as nickel sulfate salt with three different cooling rates. The compositions of the solutions included impurities of sodium, magnesium, chloride, and sulfuric acid to mimic industrial nickel electrowinning process solutions. The results show that NiSO4·6H2O mainly crystallized, and its solubility and purity decreased with the increase in the mass ratio of chloride to sulfate. Cooling rates did not have a significant influence on crystal purity; however, it did affect the filter cake moisture; lower moisture can be obtained with a lower cooling rate. The sequence of impurity removal efficiency from high to low was Cl > Na > Mg. Batch cooling crystallization is successfully applied to recover nickel as NiSO4 crystals from acidic multicomponent solutions that mimic electrowinning downstream process solutions. A high concentration of chloride reduces NiSO4 solubility and decreases the crystal purity. Magnesium persistently remains in the crystals and is harder to remove than the other two impurities: Na and Cl.
doi_str_mv 10.1002/ceat.201800695
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2265568656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265568656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3945-e60f659aa3710e0a6a033ee5ca9b095552772b37d44dc8980f10faeb5424f1723</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKdXzwHPnS9JkzYnmWX-gKGC8xzSLNHMusykRepfb-dEj54eD77vPfgQOiUwIQD03FjdTiiQEkBIvodGhFOS5YTyfTQCySArOBGH6CilFQCQYRmhi4cueueNbn1Y4-DwnTevtsGPXeN0a3Hd40vdmhdchdD49TOuYp9a3TT-81s5RgdON8me_MwxerqaLaqbbH5_fVtN55lhMueZFeAEl1qzgoAFLTQwZi03WtYgOee0KGjNimWeL00pS3AEnLY1z2nuSEHZGJ3t7m5ieO9satUqdHE9vFSUCs5FKbgYqMmOMjGkFK1Tm-jfdOwVAbWNpLaR1G-kQZA74cM3tv-HVtVsuvhzvwAzGmoN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265568656</pqid></control><display><type>article</type><title>Purification of Nickel Sulfate by Batch Cooling Crystallization</title><source>Wiley-Blackwell Journals</source><creator>Han, Bing ; Bøckman, Oluf ; Wilson, Benjamin P. ; Lundström, Mari ; Louhi-Kultanen, Marjatta</creator><creatorcontrib>Han, Bing ; Bøckman, Oluf ; Wilson, Benjamin P. ; Lundström, Mari ; Louhi-Kultanen, Marjatta</creatorcontrib><description>Cooling crystallization was successfully carried out in a batch cooling crystallizer from impure acidic solutions to recover nickel as nickel sulfate salt with three different cooling rates. The compositions of the solutions included impurities of sodium, magnesium, chloride, and sulfuric acid to mimic industrial nickel electrowinning process solutions. The results show that NiSO4·6H2O mainly crystallized, and its solubility and purity decreased with the increase in the mass ratio of chloride to sulfate. Cooling rates did not have a significant influence on crystal purity; however, it did affect the filter cake moisture; lower moisture can be obtained with a lower cooling rate. The sequence of impurity removal efficiency from high to low was Cl &gt; Na &gt; Mg. Batch cooling crystallization is successfully applied to recover nickel as NiSO4 crystals from acidic multicomponent solutions that mimic electrowinning downstream process solutions. A high concentration of chloride reduces NiSO4 solubility and decreases the crystal purity. Magnesium persistently remains in the crystals and is harder to remove than the other two impurities: Na and Cl.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201800695</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Batch cooling crystallization ; Cooling ; Cooling rate ; Crystallization ; Filter cake ; Impurities ; Impurity ; Magnesium ; Moisture ; Nickel sulfate ; Purification ; Purity ; Sodium ; Sulfuric acid</subject><ispartof>Chemical engineering &amp; technology, 2019-07, Vol.42 (7), p.1475-1480</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3945-e60f659aa3710e0a6a033ee5ca9b095552772b37d44dc8980f10faeb5424f1723</citedby><cites>FETCH-LOGICAL-c3945-e60f659aa3710e0a6a033ee5ca9b095552772b37d44dc8980f10faeb5424f1723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201800695$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201800695$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Bøckman, Oluf</creatorcontrib><creatorcontrib>Wilson, Benjamin P.</creatorcontrib><creatorcontrib>Lundström, Mari</creatorcontrib><creatorcontrib>Louhi-Kultanen, Marjatta</creatorcontrib><title>Purification of Nickel Sulfate by Batch Cooling Crystallization</title><title>Chemical engineering &amp; technology</title><description>Cooling crystallization was successfully carried out in a batch cooling crystallizer from impure acidic solutions to recover nickel as nickel sulfate salt with three different cooling rates. The compositions of the solutions included impurities of sodium, magnesium, chloride, and sulfuric acid to mimic industrial nickel electrowinning process solutions. The results show that NiSO4·6H2O mainly crystallized, and its solubility and purity decreased with the increase in the mass ratio of chloride to sulfate. Cooling rates did not have a significant influence on crystal purity; however, it did affect the filter cake moisture; lower moisture can be obtained with a lower cooling rate. The sequence of impurity removal efficiency from high to low was Cl &gt; Na &gt; Mg. Batch cooling crystallization is successfully applied to recover nickel as NiSO4 crystals from acidic multicomponent solutions that mimic electrowinning downstream process solutions. A high concentration of chloride reduces NiSO4 solubility and decreases the crystal purity. Magnesium persistently remains in the crystals and is harder to remove than the other two impurities: Na and Cl.</description><subject>Batch cooling crystallization</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Crystallization</subject><subject>Filter cake</subject><subject>Impurities</subject><subject>Impurity</subject><subject>Magnesium</subject><subject>Moisture</subject><subject>Nickel sulfate</subject><subject>Purification</subject><subject>Purity</subject><subject>Sodium</subject><subject>Sulfuric acid</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKdXzwHPnS9JkzYnmWX-gKGC8xzSLNHMusykRepfb-dEj54eD77vPfgQOiUwIQD03FjdTiiQEkBIvodGhFOS5YTyfTQCySArOBGH6CilFQCQYRmhi4cueueNbn1Y4-DwnTevtsGPXeN0a3Hd40vdmhdchdD49TOuYp9a3TT-81s5RgdON8me_MwxerqaLaqbbH5_fVtN55lhMueZFeAEl1qzgoAFLTQwZi03WtYgOee0KGjNimWeL00pS3AEnLY1z2nuSEHZGJ3t7m5ieO9satUqdHE9vFSUCs5FKbgYqMmOMjGkFK1Tm-jfdOwVAbWNpLaR1G-kQZA74cM3tv-HVtVsuvhzvwAzGmoN</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Han, Bing</creator><creator>Bøckman, Oluf</creator><creator>Wilson, Benjamin P.</creator><creator>Lundström, Mari</creator><creator>Louhi-Kultanen, Marjatta</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201907</creationdate><title>Purification of Nickel Sulfate by Batch Cooling Crystallization</title><author>Han, Bing ; Bøckman, Oluf ; Wilson, Benjamin P. ; Lundström, Mari ; Louhi-Kultanen, Marjatta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3945-e60f659aa3710e0a6a033ee5ca9b095552772b37d44dc8980f10faeb5424f1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batch cooling crystallization</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Crystallization</topic><topic>Filter cake</topic><topic>Impurities</topic><topic>Impurity</topic><topic>Magnesium</topic><topic>Moisture</topic><topic>Nickel sulfate</topic><topic>Purification</topic><topic>Purity</topic><topic>Sodium</topic><topic>Sulfuric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Bøckman, Oluf</creatorcontrib><creatorcontrib>Wilson, Benjamin P.</creatorcontrib><creatorcontrib>Lundström, Mari</creatorcontrib><creatorcontrib>Louhi-Kultanen, Marjatta</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Bing</au><au>Bøckman, Oluf</au><au>Wilson, Benjamin P.</au><au>Lundström, Mari</au><au>Louhi-Kultanen, Marjatta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Purification of Nickel Sulfate by Batch Cooling Crystallization</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2019-07</date><risdate>2019</risdate><volume>42</volume><issue>7</issue><spage>1475</spage><epage>1480</epage><pages>1475-1480</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>Cooling crystallization was successfully carried out in a batch cooling crystallizer from impure acidic solutions to recover nickel as nickel sulfate salt with three different cooling rates. The compositions of the solutions included impurities of sodium, magnesium, chloride, and sulfuric acid to mimic industrial nickel electrowinning process solutions. The results show that NiSO4·6H2O mainly crystallized, and its solubility and purity decreased with the increase in the mass ratio of chloride to sulfate. Cooling rates did not have a significant influence on crystal purity; however, it did affect the filter cake moisture; lower moisture can be obtained with a lower cooling rate. The sequence of impurity removal efficiency from high to low was Cl &gt; Na &gt; Mg. Batch cooling crystallization is successfully applied to recover nickel as NiSO4 crystals from acidic multicomponent solutions that mimic electrowinning downstream process solutions. A high concentration of chloride reduces NiSO4 solubility and decreases the crystal purity. Magnesium persistently remains in the crystals and is harder to remove than the other two impurities: Na and Cl.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.201800695</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2019-07, Vol.42 (7), p.1475-1480
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_journals_2265568656
source Wiley-Blackwell Journals
subjects Batch cooling crystallization
Cooling
Cooling rate
Crystallization
Filter cake
Impurities
Impurity
Magnesium
Moisture
Nickel sulfate
Purification
Purity
Sodium
Sulfuric acid
title Purification of Nickel Sulfate by Batch Cooling Crystallization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Purification%20of%20Nickel%20Sulfate%20by%20Batch%20Cooling%20Crystallization&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Han,%20Bing&rft.date=2019-07&rft.volume=42&rft.issue=7&rft.spage=1475&rft.epage=1480&rft.pages=1475-1480&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201800695&rft_dat=%3Cproquest_cross%3E2265568656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265568656&rft_id=info:pmid/&rfr_iscdi=true