Estimation of Jointly Normally Distributed Demand for Cross-Selling Items in Inventory Systems with Lost Sales

Demand estimation is often confronted with incomplete information of censored demand because of lost sales. Many estimators have been proposed to deal with lost sales when estimating the parameters of demand distribution. This study introduces the cross-selling effect into estimations, where two ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-21
Hauptverfasser: Zheng, Haitao, Zhang, Yi-Ye, Wang, Qi-Qi, Zhang, Ren-Qian, Hu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 2019
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2019
creator Zheng, Haitao
Zhang, Yi-Ye
Wang, Qi-Qi
Zhang, Ren-Qian
Hu, Jie
description Demand estimation is often confronted with incomplete information of censored demand because of lost sales. Many estimators have been proposed to deal with lost sales when estimating the parameters of demand distribution. This study introduces the cross-selling effect into estimations, where two items are cross-sold because of the positive externality in a newsvendor-type inventory system. We propose an approach to estimate the parameters of a jointly normally distributed demand for two cross-selling items based on an iterative framework considering lost sales. Computational results based on more than two million numerical examples show that our estimator achieves high precision. Compared with the point estimations without lost sales, all the relative errors of the estimations of demand expectation, standard deviation, and correlation coefficient are no larger than 2% on average if the sample size is no smaller than 800. In particular, for demand expectation, the error is smaller than 1% if the comprehensive censoring level is no larger than four standard deviations (implying a 2σ-level of safety stock for each item), even if the sample size decreases to 50. This implies that the demand estimator should be competent in modern inventory systems that are rich in data.
doi_str_mv 10.1155/2019/7219326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2265562280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265562280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-3e506be4d9d1cf3a79f13e9a9b214af1e8804dc3c9c957df770da9674914c8723</originalsourceid><addsrcrecordid>eNqFkMFLwzAUh4soOKc3zxLwqHV5SZM2R9mmToYepuCtZG3qMtpkJpmj_72dHXj09H48Pn6P90XRJeA7AMZGBIMYpQQEJfwoGgDjNGaQpMddxiSJgdCP0-jM-zXGBBhkg8hMfdCNDNoaZCv0bLUJdYterGtk3YWJ9sHp5TaoEk1UI02JKuvQ2Fnv44Wqa20-0SyoxiNt0Mx8KxOsa9Gi9b_LnQ4rNLc-oIWslT-PTipZe3VxmMPo_WH6Nn6K56-Ps_H9PC4oxyGmimG-VEkpSigqKlNRAVVCiiWBRFagsgwnZUELUQiWllWa4lIKniYCkiJLCR1G133vxtmvrfIhX9utM93JnBDOGCckwx1121PF_h2nqnzjOhmuzQHne6P53mh-MNrhNz2-0qaUO_0ffdXTnbWuWv7RIHjGBf0BqtKASg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265562280</pqid></control><display><type>article</type><title>Estimation of Jointly Normally Distributed Demand for Cross-Selling Items in Inventory Systems with Lost Sales</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zheng, Haitao ; Zhang, Yi-Ye ; Wang, Qi-Qi ; Zhang, Ren-Qian ; Hu, Jie</creator><contributor>D'Aniello, Giuseppe ; D′Aniello, Giuseppe ; Giuseppe D'Aniello</contributor><creatorcontrib>Zheng, Haitao ; Zhang, Yi-Ye ; Wang, Qi-Qi ; Zhang, Ren-Qian ; Hu, Jie ; D'Aniello, Giuseppe ; D′Aniello, Giuseppe ; Giuseppe D'Aniello</creatorcontrib><description>Demand estimation is often confronted with incomplete information of censored demand because of lost sales. Many estimators have been proposed to deal with lost sales when estimating the parameters of demand distribution. This study introduces the cross-selling effect into estimations, where two items are cross-sold because of the positive externality in a newsvendor-type inventory system. We propose an approach to estimate the parameters of a jointly normally distributed demand for two cross-selling items based on an iterative framework considering lost sales. Computational results based on more than two million numerical examples show that our estimator achieves high precision. Compared with the point estimations without lost sales, all the relative errors of the estimations of demand expectation, standard deviation, and correlation coefficient are no larger than 2% on average if the sample size is no smaller than 800. In particular, for demand expectation, the error is smaller than 1% if the comprehensive censoring level is no larger than four standard deviations (implying a 2σ-level of safety stock for each item), even if the sample size decreases to 50. This implies that the demand estimator should be competent in modern inventory systems that are rich in data.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/7219326</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Binomial distribution ; Consumption ; Correlation coefficients ; Demand ; Economic models ; Engineering ; Externality ; Inventory ; Inventory management ; Iterative methods ; Linear programming ; Literature reviews ; Methods ; Operations research ; Order quantity ; Parameter estimation ; Perishable goods ; Sales</subject><ispartof>Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-21</ispartof><rights>Copyright © 2019 Ren-Qian Zhang et al.</rights><rights>Copyright © 2019 Ren-Qian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-3e506be4d9d1cf3a79f13e9a9b214af1e8804dc3c9c957df770da9674914c8723</citedby><cites>FETCH-LOGICAL-c360t-3e506be4d9d1cf3a79f13e9a9b214af1e8804dc3c9c957df770da9674914c8723</cites><orcidid>0000-0001-9539-3537 ; 0000-0002-0142-8872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><contributor>D'Aniello, Giuseppe</contributor><contributor>D′Aniello, Giuseppe</contributor><contributor>Giuseppe D'Aniello</contributor><creatorcontrib>Zheng, Haitao</creatorcontrib><creatorcontrib>Zhang, Yi-Ye</creatorcontrib><creatorcontrib>Wang, Qi-Qi</creatorcontrib><creatorcontrib>Zhang, Ren-Qian</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><title>Estimation of Jointly Normally Distributed Demand for Cross-Selling Items in Inventory Systems with Lost Sales</title><title>Mathematical problems in engineering</title><description>Demand estimation is often confronted with incomplete information of censored demand because of lost sales. Many estimators have been proposed to deal with lost sales when estimating the parameters of demand distribution. This study introduces the cross-selling effect into estimations, where two items are cross-sold because of the positive externality in a newsvendor-type inventory system. We propose an approach to estimate the parameters of a jointly normally distributed demand for two cross-selling items based on an iterative framework considering lost sales. Computational results based on more than two million numerical examples show that our estimator achieves high precision. Compared with the point estimations without lost sales, all the relative errors of the estimations of demand expectation, standard deviation, and correlation coefficient are no larger than 2% on average if the sample size is no smaller than 800. In particular, for demand expectation, the error is smaller than 1% if the comprehensive censoring level is no larger than four standard deviations (implying a 2σ-level of safety stock for each item), even if the sample size decreases to 50. This implies that the demand estimator should be competent in modern inventory systems that are rich in data.</description><subject>Algorithms</subject><subject>Binomial distribution</subject><subject>Consumption</subject><subject>Correlation coefficients</subject><subject>Demand</subject><subject>Economic models</subject><subject>Engineering</subject><subject>Externality</subject><subject>Inventory</subject><subject>Inventory management</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>Literature reviews</subject><subject>Methods</subject><subject>Operations research</subject><subject>Order quantity</subject><subject>Parameter estimation</subject><subject>Perishable goods</subject><subject>Sales</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkMFLwzAUh4soOKc3zxLwqHV5SZM2R9mmToYepuCtZG3qMtpkJpmj_72dHXj09H48Pn6P90XRJeA7AMZGBIMYpQQEJfwoGgDjNGaQpMddxiSJgdCP0-jM-zXGBBhkg8hMfdCNDNoaZCv0bLUJdYterGtk3YWJ9sHp5TaoEk1UI02JKuvQ2Fnv44Wqa20-0SyoxiNt0Mx8KxOsa9Gi9b_LnQ4rNLc-oIWslT-PTipZe3VxmMPo_WH6Nn6K56-Ps_H9PC4oxyGmimG-VEkpSigqKlNRAVVCiiWBRFagsgwnZUELUQiWllWa4lIKniYCkiJLCR1G133vxtmvrfIhX9utM93JnBDOGCckwx1121PF_h2nqnzjOhmuzQHne6P53mh-MNrhNz2-0qaUO_0ffdXTnbWuWv7RIHjGBf0BqtKASg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zheng, Haitao</creator><creator>Zhang, Yi-Ye</creator><creator>Wang, Qi-Qi</creator><creator>Zhang, Ren-Qian</creator><creator>Hu, Jie</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9539-3537</orcidid><orcidid>https://orcid.org/0000-0002-0142-8872</orcidid></search><sort><creationdate>2019</creationdate><title>Estimation of Jointly Normally Distributed Demand for Cross-Selling Items in Inventory Systems with Lost Sales</title><author>Zheng, Haitao ; Zhang, Yi-Ye ; Wang, Qi-Qi ; Zhang, Ren-Qian ; Hu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-3e506be4d9d1cf3a79f13e9a9b214af1e8804dc3c9c957df770da9674914c8723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Binomial distribution</topic><topic>Consumption</topic><topic>Correlation coefficients</topic><topic>Demand</topic><topic>Economic models</topic><topic>Engineering</topic><topic>Externality</topic><topic>Inventory</topic><topic>Inventory management</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>Literature reviews</topic><topic>Methods</topic><topic>Operations research</topic><topic>Order quantity</topic><topic>Parameter estimation</topic><topic>Perishable goods</topic><topic>Sales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Haitao</creatorcontrib><creatorcontrib>Zhang, Yi-Ye</creatorcontrib><creatorcontrib>Wang, Qi-Qi</creatorcontrib><creatorcontrib>Zhang, Ren-Qian</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Haitao</au><au>Zhang, Yi-Ye</au><au>Wang, Qi-Qi</au><au>Zhang, Ren-Qian</au><au>Hu, Jie</au><au>D'Aniello, Giuseppe</au><au>D′Aniello, Giuseppe</au><au>Giuseppe D'Aniello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Jointly Normally Distributed Demand for Cross-Selling Items in Inventory Systems with Lost Sales</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Demand estimation is often confronted with incomplete information of censored demand because of lost sales. Many estimators have been proposed to deal with lost sales when estimating the parameters of demand distribution. This study introduces the cross-selling effect into estimations, where two items are cross-sold because of the positive externality in a newsvendor-type inventory system. We propose an approach to estimate the parameters of a jointly normally distributed demand for two cross-selling items based on an iterative framework considering lost sales. Computational results based on more than two million numerical examples show that our estimator achieves high precision. Compared with the point estimations without lost sales, all the relative errors of the estimations of demand expectation, standard deviation, and correlation coefficient are no larger than 2% on average if the sample size is no smaller than 800. In particular, for demand expectation, the error is smaller than 1% if the comprehensive censoring level is no larger than four standard deviations (implying a 2σ-level of safety stock for each item), even if the sample size decreases to 50. This implies that the demand estimator should be competent in modern inventory systems that are rich in data.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/7219326</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9539-3537</orcidid><orcidid>https://orcid.org/0000-0002-0142-8872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-21
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2265562280
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Binomial distribution
Consumption
Correlation coefficients
Demand
Economic models
Engineering
Externality
Inventory
Inventory management
Iterative methods
Linear programming
Literature reviews
Methods
Operations research
Order quantity
Parameter estimation
Perishable goods
Sales
title Estimation of Jointly Normally Distributed Demand for Cross-Selling Items in Inventory Systems with Lost Sales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Jointly%20Normally%20Distributed%20Demand%20for%20Cross-Selling%20Items%20in%20Inventory%20Systems%20with%20Lost%20Sales&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zheng,%20Haitao&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/7219326&rft_dat=%3Cproquest_cross%3E2265562280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265562280&rft_id=info:pmid/&rfr_iscdi=true