Statistical Learning Methods as a Basis for Skillful Seasonal Temperature Forecasts in Europe

A statistical learning approach to produce seasonal temperature forecasts in western Europe and Scandinavia was implemented and tested. The leading principal components (PCs) of sea surface temperature (SST) and the geopotential at the 150-hPa level (GPT) were derived from reanalysis datasets and us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2019-09, Vol.32 (17), p.5363-5379
Hauptverfasser: Kämäräinen, Matti, Uotila, Petteri, Karpechko, Alexey Yu, Hyvärinen, Otto, Lehtonen, Ilari, Räisänen, Jouni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5379
container_issue 17
container_start_page 5363
container_title Journal of climate
container_volume 32
creator Kämäräinen, Matti
Uotila, Petteri
Karpechko, Alexey Yu
Hyvärinen, Otto
Lehtonen, Ilari
Räisänen, Jouni
description A statistical learning approach to produce seasonal temperature forecasts in western Europe and Scandinavia was implemented and tested. The leading principal components (PCs) of sea surface temperature (SST) and the geopotential at the 150-hPa level (GPT) were derived from reanalysis datasets and used at different lags (from one to five seasons) as predictors. Random sampling of both the fitting years and the potential predictors together with the Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to create a large ensemble of statistical models. Applying the models to independent test years shows that the ensemble performs well over the target areas and that the ensemble mean is more accurate than the best individual ensemble member on average. Skillful results were especially found for summer and fall, with the anomaly correlation coefficient values ranging between 0.41 and 0.68 for these seasons. The correct simulation of decadal trends, using sufficiently long time series for fitting (70 years), and the use of lagged predictors increased the prediction skill. The decadal-scale variability of SST, most importantly the Atlantic multidecadal oscillation (AMO), and different PCs of GPT are the most important individual predictors among all predictors. Both SST and GPT bring equally much predictive power, although their importance is different in different seasons.
doi_str_mv 10.1175/JCLI-D-18-0765.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2264993007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26831658</jstor_id><sourcerecordid>26831658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-4649a8fa18c95b2cc069493f7a1cb4a68a35d07b7140dbf06190d3c188ea30a63</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3L0LAc-eXpknTo-6HTiYeNo8SvqWpdnZNTdKD_70dE-GD9_I8Lx8vIdcMJozl4u55uloms4SpBHIpJuyEjJhIIYEsS0_JCFSRJSoX4pxchLADYKkEGJH3dcRYh1gbbOjKom_r9oO-2PjpykBxOPqAoQ60cp6uv-qmqfqGri0G1w7Gxu476zH23tKF89ZgiIHWLZ333nX2kpxV2AR79Zdj8raYb6ZPyer1cTm9XyWGcxGTTGYFqgqZMoXYpsaALLKCVzkys81QKuSihHybswzKbQWSFVByw5SyyAElH5PbY2_n3XdvQ9Q71_vhwaDTdCgvOEA-UHCkjHcheFvpztd79D-agT6MqA8j6plmSh9G1GxQbo7KLkTn__lUKs6kUPwXaIRujA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264993007</pqid></control><display><type>article</type><title>Statistical Learning Methods as a Basis for Skillful Seasonal Temperature Forecasts in Europe</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>Kämäräinen, Matti ; Uotila, Petteri ; Karpechko, Alexey Yu ; Hyvärinen, Otto ; Lehtonen, Ilari ; Räisänen, Jouni</creator><creatorcontrib>Kämäräinen, Matti ; Uotila, Petteri ; Karpechko, Alexey Yu ; Hyvärinen, Otto ; Lehtonen, Ilari ; Räisänen, Jouni</creatorcontrib><description>A statistical learning approach to produce seasonal temperature forecasts in western Europe and Scandinavia was implemented and tested. The leading principal components (PCs) of sea surface temperature (SST) and the geopotential at the 150-hPa level (GPT) were derived from reanalysis datasets and used at different lags (from one to five seasons) as predictors. Random sampling of both the fitting years and the potential predictors together with the Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to create a large ensemble of statistical models. Applying the models to independent test years shows that the ensemble performs well over the target areas and that the ensemble mean is more accurate than the best individual ensemble member on average. Skillful results were especially found for summer and fall, with the anomaly correlation coefficient values ranging between 0.41 and 0.68 for these seasons. The correct simulation of decadal trends, using sufficiently long time series for fitting (70 years), and the use of lagged predictors increased the prediction skill. The decadal-scale variability of SST, most importantly the Atlantic multidecadal oscillation (AMO), and different PCs of GPT are the most important individual predictors among all predictors. Both SST and GPT bring equally much predictive power, although their importance is different in different seasons.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-18-0765.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Artificial intelligence ; Atlantic Oscillation ; Atmospheric sciences ; Climate change ; Computer simulation ; Correlation coefficient ; Correlation coefficients ; Deep learning ; Dynamic height ; Geopotential ; Ice ; Learning ; Machine learning ; Mathematical models ; Methods ; Neural networks ; Precipitation ; Predictions ; Random sampling ; Sea surface ; Sea surface temperature ; Seasons ; Statistical analysis ; Statistical methods ; Statistical models ; Statistical sampling ; Surface temperature ; Teaching methods ; Temperature ; Temperature effects ; Weather ; Weather forecasting</subject><ispartof>Journal of climate, 2019-09, Vol.32 (17), p.5363-5379</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-4649a8fa18c95b2cc069493f7a1cb4a68a35d07b7140dbf06190d3c188ea30a63</citedby><cites>FETCH-LOGICAL-c335t-4649a8fa18c95b2cc069493f7a1cb4a68a35d07b7140dbf06190d3c188ea30a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26831658$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26831658$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Kämäräinen, Matti</creatorcontrib><creatorcontrib>Uotila, Petteri</creatorcontrib><creatorcontrib>Karpechko, Alexey Yu</creatorcontrib><creatorcontrib>Hyvärinen, Otto</creatorcontrib><creatorcontrib>Lehtonen, Ilari</creatorcontrib><creatorcontrib>Räisänen, Jouni</creatorcontrib><title>Statistical Learning Methods as a Basis for Skillful Seasonal Temperature Forecasts in Europe</title><title>Journal of climate</title><description>A statistical learning approach to produce seasonal temperature forecasts in western Europe and Scandinavia was implemented and tested. The leading principal components (PCs) of sea surface temperature (SST) and the geopotential at the 150-hPa level (GPT) were derived from reanalysis datasets and used at different lags (from one to five seasons) as predictors. Random sampling of both the fitting years and the potential predictors together with the Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to create a large ensemble of statistical models. Applying the models to independent test years shows that the ensemble performs well over the target areas and that the ensemble mean is more accurate than the best individual ensemble member on average. Skillful results were especially found for summer and fall, with the anomaly correlation coefficient values ranging between 0.41 and 0.68 for these seasons. The correct simulation of decadal trends, using sufficiently long time series for fitting (70 years), and the use of lagged predictors increased the prediction skill. The decadal-scale variability of SST, most importantly the Atlantic multidecadal oscillation (AMO), and different PCs of GPT are the most important individual predictors among all predictors. Both SST and GPT bring equally much predictive power, although their importance is different in different seasons.</description><subject>Artificial intelligence</subject><subject>Atlantic Oscillation</subject><subject>Atmospheric sciences</subject><subject>Climate change</subject><subject>Computer simulation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Dynamic height</subject><subject>Geopotential</subject><subject>Ice</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Predictions</subject><subject>Random sampling</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Seasons</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistical sampling</subject><subject>Surface temperature</subject><subject>Teaching methods</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM9LwzAYhoMoOKd3L0LAc-eXpknTo-6HTiYeNo8SvqWpdnZNTdKD_70dE-GD9_I8Lx8vIdcMJozl4u55uloms4SpBHIpJuyEjJhIIYEsS0_JCFSRJSoX4pxchLADYKkEGJH3dcRYh1gbbOjKom_r9oO-2PjpykBxOPqAoQ60cp6uv-qmqfqGri0G1w7Gxu476zH23tKF89ZgiIHWLZ333nX2kpxV2AR79Zdj8raYb6ZPyer1cTm9XyWGcxGTTGYFqgqZMoXYpsaALLKCVzkys81QKuSihHybswzKbQWSFVByw5SyyAElH5PbY2_n3XdvQ9Q71_vhwaDTdCgvOEA-UHCkjHcheFvpztd79D-agT6MqA8j6plmSh9G1GxQbo7KLkTn__lUKs6kUPwXaIRujA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Kämäräinen, Matti</creator><creator>Uotila, Petteri</creator><creator>Karpechko, Alexey Yu</creator><creator>Hyvärinen, Otto</creator><creator>Lehtonen, Ilari</creator><creator>Räisänen, Jouni</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190901</creationdate><title>Statistical Learning Methods as a Basis for Skillful Seasonal Temperature Forecasts in Europe</title><author>Kämäräinen, Matti ; Uotila, Petteri ; Karpechko, Alexey Yu ; Hyvärinen, Otto ; Lehtonen, Ilari ; Räisänen, Jouni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-4649a8fa18c95b2cc069493f7a1cb4a68a35d07b7140dbf06190d3c188ea30a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Atlantic Oscillation</topic><topic>Atmospheric sciences</topic><topic>Climate change</topic><topic>Computer simulation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Dynamic height</topic><topic>Geopotential</topic><topic>Ice</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Predictions</topic><topic>Random sampling</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Seasons</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistical sampling</topic><topic>Surface temperature</topic><topic>Teaching methods</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kämäräinen, Matti</creatorcontrib><creatorcontrib>Uotila, Petteri</creatorcontrib><creatorcontrib>Karpechko, Alexey Yu</creatorcontrib><creatorcontrib>Hyvärinen, Otto</creatorcontrib><creatorcontrib>Lehtonen, Ilari</creatorcontrib><creatorcontrib>Räisänen, Jouni</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kämäräinen, Matti</au><au>Uotila, Petteri</au><au>Karpechko, Alexey Yu</au><au>Hyvärinen, Otto</au><au>Lehtonen, Ilari</au><au>Räisänen, Jouni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Learning Methods as a Basis for Skillful Seasonal Temperature Forecasts in Europe</atitle><jtitle>Journal of climate</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>32</volume><issue>17</issue><spage>5363</spage><epage>5379</epage><pages>5363-5379</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>A statistical learning approach to produce seasonal temperature forecasts in western Europe and Scandinavia was implemented and tested. The leading principal components (PCs) of sea surface temperature (SST) and the geopotential at the 150-hPa level (GPT) were derived from reanalysis datasets and used at different lags (from one to five seasons) as predictors. Random sampling of both the fitting years and the potential predictors together with the Least Absolute Shrinkage and Selection Operator regression (LASSO) was used to create a large ensemble of statistical models. Applying the models to independent test years shows that the ensemble performs well over the target areas and that the ensemble mean is more accurate than the best individual ensemble member on average. Skillful results were especially found for summer and fall, with the anomaly correlation coefficient values ranging between 0.41 and 0.68 for these seasons. The correct simulation of decadal trends, using sufficiently long time series for fitting (70 years), and the use of lagged predictors increased the prediction skill. The decadal-scale variability of SST, most importantly the Atlantic multidecadal oscillation (AMO), and different PCs of GPT are the most important individual predictors among all predictors. Both SST and GPT bring equally much predictive power, although their importance is different in different seasons.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-18-0765.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2019-09, Vol.32 (17), p.5363-5379
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2264993007
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; JSTOR
subjects Artificial intelligence
Atlantic Oscillation
Atmospheric sciences
Climate change
Computer simulation
Correlation coefficient
Correlation coefficients
Deep learning
Dynamic height
Geopotential
Ice
Learning
Machine learning
Mathematical models
Methods
Neural networks
Precipitation
Predictions
Random sampling
Sea surface
Sea surface temperature
Seasons
Statistical analysis
Statistical methods
Statistical models
Statistical sampling
Surface temperature
Teaching methods
Temperature
Temperature effects
Weather
Weather forecasting
title Statistical Learning Methods as a Basis for Skillful Seasonal Temperature Forecasts in Europe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Learning%20Methods%20as%20a%20Basis%20for%20Skillful%20Seasonal%20Temperature%20Forecasts%20in%20Europe&rft.jtitle=Journal%20of%20climate&rft.au=K%C3%A4m%C3%A4r%C3%A4inen,%20Matti&rft.date=2019-09-01&rft.volume=32&rft.issue=17&rft.spage=5363&rft.epage=5379&rft.pages=5363-5379&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-18-0765.1&rft_dat=%3Cjstor_proqu%3E26831658%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264993007&rft_id=info:pmid/&rft_jstor_id=26831658&rfr_iscdi=true