Prediction of B2C e-commerce order arrival using hybrid autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) for managing fluctuation of throughput in e-fulfilment centres

•A new study that forecasts the daily arrival pattern of e-commerce orders.•An AR-ANFIS model for e-order arrival prediction is proposed.•A two-stage model performance validation is introduced.•Experimental results indicate that the proposed model outperforms ARIMA model. The complexity of today...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2019-11, Vol.134, p.304-324
Hauptverfasser: Leung, K.H., Choy, K.L., Ho, G.T.S., Lee, Carman K.M., Lam, H.Y., Luk, C.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue
container_start_page 304
container_title Expert systems with applications
container_volume 134
creator Leung, K.H.
Choy, K.L.
Ho, G.T.S.
Lee, Carman K.M.
Lam, H.Y.
Luk, C.C.
description •A new study that forecasts the daily arrival pattern of e-commerce orders.•An AR-ANFIS model for e-order arrival prediction is proposed.•A two-stage model performance validation is introduced.•Experimental results indicate that the proposed model outperforms ARIMA model. The complexity of today's e-commerce logistics environment compels practitioners to achieve a higher level of operating efficiency. As it is infeasible for operators to process a large number of discrete e-orders individually, warehouse postponement, that is, delaying the execution of a logistics process until the last possible moment, is essential. Yet the question remains as to how one can accurately identify the timing for consolidating e-orders, and subsequently releasing the grouped e-orders for batch order picking. This is a subject, lacking previous research, but is fundamentally crucial in today's e-commerce logistics environment. This paper introduces an integrated autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) approach for forecasting e-commerce order arrivals. Two AR-ANFIS models are built for evaluating their prediction ability against ARIMA models. The experimental results confirm the suitability of the hybrid model for forecasting e-order arrivals. To make use of the model output, an algorithm is formulated to convert e-order arrival figures into cut-off time of order grouping. In this sense, this total solution, packaged as a decision support system, namely the E-order arrival prediction system, assists logistics practitioners in judging when to release the grouped e-orders for batch processing, and essentially improves their order handling capability.
doi_str_mv 10.1016/j.eswa.2019.05.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2264151877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417419303562</els_id><sourcerecordid>2264151877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-644f2916d3131b23a96fb529c874b91335087997d4ca3b162a2a6a1a237e0b353</originalsourceid><addsrcrecordid>eNp9UcuO1DAQjBBIDAs_wMkSFzgk60cSTyQuw2gXVloB4nG2HKc941ESD2170OyH8X04GvbKpbsPVdWlqqJ4zWjFKGuvDxWE37rilHUVbSrK5ZNixdZSlK3sxNNiRbtGljWT9fPiRQgHSpmkVK6KP18RBmei8zPxlnzgWwKl8dMEaIB4HACJRnQnPZIU3Lwj-3OPbiA6RY-wQwjBnaDUgz7GfJAZEvrSpoeHM3GzBYQ5C4VziDCRt5tv5ebz7d33d8R6JJOe9W7RtGMyMelHF3GPPu32xxSzRPZj02jdOMEcickj_3xZPLN6DPDq374qft7e_Nh-Ku-_fLzbbu5LI2Qby7auLe9YOwgmWM-F7lrbN7wza1n3HROioWvZdXKojRY9a7nmutVMcyGB9qIRV8Wbi-4R_a8EIaqDTzjnl4rztmZNzlhmFL-gDPoQEKw6ops0nhWjaulHHdTSj1r6UbRRuZ9Men8hQfZ_coAqGLeENTgEE9Xg3f_ofwEedpwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264151877</pqid></control><display><type>article</type><title>Prediction of B2C e-commerce order arrival using hybrid autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) for managing fluctuation of throughput in e-fulfilment centres</title><source>Elsevier ScienceDirect Journals</source><creator>Leung, K.H. ; Choy, K.L. ; Ho, G.T.S. ; Lee, Carman K.M. ; Lam, H.Y. ; Luk, C.C.</creator><creatorcontrib>Leung, K.H. ; Choy, K.L. ; Ho, G.T.S. ; Lee, Carman K.M. ; Lam, H.Y. ; Luk, C.C.</creatorcontrib><description>•A new study that forecasts the daily arrival pattern of e-commerce orders.•An AR-ANFIS model for e-order arrival prediction is proposed.•A two-stage model performance validation is introduced.•Experimental results indicate that the proposed model outperforms ARIMA model. The complexity of today's e-commerce logistics environment compels practitioners to achieve a higher level of operating efficiency. As it is infeasible for operators to process a large number of discrete e-orders individually, warehouse postponement, that is, delaying the execution of a logistics process until the last possible moment, is essential. Yet the question remains as to how one can accurately identify the timing for consolidating e-orders, and subsequently releasing the grouped e-orders for batch order picking. This is a subject, lacking previous research, but is fundamentally crucial in today's e-commerce logistics environment. This paper introduces an integrated autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) approach for forecasting e-commerce order arrivals. Two AR-ANFIS models are built for evaluating their prediction ability against ARIMA models. The experimental results confirm the suitability of the hybrid model for forecasting e-order arrivals. To make use of the model output, an algorithm is formulated to convert e-order arrival figures into cut-off time of order grouping. In this sense, this total solution, packaged as a decision support system, namely the E-order arrival prediction system, assists logistics practitioners in judging when to release the grouped e-orders for batch processing, and essentially improves their order handling capability.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2019.05.027</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adaptive neuro-fuzzy inference system (ANFIS) ; Adaptive systems ; Algorithms ; Arrivals ; Artificial neural networks ; Autoregressive (AR) model ; Autoregressive models ; Autoregressive processes ; Batch processing ; Decision support systems ; E-commerce logistics ; Economic forecasting ; Electronic commerce ; Fuzzy logic ; Fuzzy systems ; Hybrid systems ; Inference ; Logistics ; Order arrival prediction ; Order picking ; Variation ; Warehouse postponement applications ; Warehouses</subject><ispartof>Expert systems with applications, 2019-11, Vol.134, p.304-324</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-644f2916d3131b23a96fb529c874b91335087997d4ca3b162a2a6a1a237e0b353</citedby><cites>FETCH-LOGICAL-c376t-644f2916d3131b23a96fb529c874b91335087997d4ca3b162a2a6a1a237e0b353</cites><orcidid>0000-0001-9252-1476 ; 0000-0001-8577-4547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417419303562$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Leung, K.H.</creatorcontrib><creatorcontrib>Choy, K.L.</creatorcontrib><creatorcontrib>Ho, G.T.S.</creatorcontrib><creatorcontrib>Lee, Carman K.M.</creatorcontrib><creatorcontrib>Lam, H.Y.</creatorcontrib><creatorcontrib>Luk, C.C.</creatorcontrib><title>Prediction of B2C e-commerce order arrival using hybrid autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) for managing fluctuation of throughput in e-fulfilment centres</title><title>Expert systems with applications</title><description>•A new study that forecasts the daily arrival pattern of e-commerce orders.•An AR-ANFIS model for e-order arrival prediction is proposed.•A two-stage model performance validation is introduced.•Experimental results indicate that the proposed model outperforms ARIMA model. The complexity of today's e-commerce logistics environment compels practitioners to achieve a higher level of operating efficiency. As it is infeasible for operators to process a large number of discrete e-orders individually, warehouse postponement, that is, delaying the execution of a logistics process until the last possible moment, is essential. Yet the question remains as to how one can accurately identify the timing for consolidating e-orders, and subsequently releasing the grouped e-orders for batch order picking. This is a subject, lacking previous research, but is fundamentally crucial in today's e-commerce logistics environment. This paper introduces an integrated autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) approach for forecasting e-commerce order arrivals. Two AR-ANFIS models are built for evaluating their prediction ability against ARIMA models. The experimental results confirm the suitability of the hybrid model for forecasting e-order arrivals. To make use of the model output, an algorithm is formulated to convert e-order arrival figures into cut-off time of order grouping. In this sense, this total solution, packaged as a decision support system, namely the E-order arrival prediction system, assists logistics practitioners in judging when to release the grouped e-orders for batch processing, and essentially improves their order handling capability.</description><subject>Adaptive neuro-fuzzy inference system (ANFIS)</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Arrivals</subject><subject>Artificial neural networks</subject><subject>Autoregressive (AR) model</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Batch processing</subject><subject>Decision support systems</subject><subject>E-commerce logistics</subject><subject>Economic forecasting</subject><subject>Electronic commerce</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Hybrid systems</subject><subject>Inference</subject><subject>Logistics</subject><subject>Order arrival prediction</subject><subject>Order picking</subject><subject>Variation</subject><subject>Warehouse postponement applications</subject><subject>Warehouses</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcuO1DAQjBBIDAs_wMkSFzgk60cSTyQuw2gXVloB4nG2HKc941ESD2170OyH8X04GvbKpbsPVdWlqqJ4zWjFKGuvDxWE37rilHUVbSrK5ZNixdZSlK3sxNNiRbtGljWT9fPiRQgHSpmkVK6KP18RBmei8zPxlnzgWwKl8dMEaIB4HACJRnQnPZIU3Lwj-3OPbiA6RY-wQwjBnaDUgz7GfJAZEvrSpoeHM3GzBYQ5C4VziDCRt5tv5ebz7d33d8R6JJOe9W7RtGMyMelHF3GPPu32xxSzRPZj02jdOMEcickj_3xZPLN6DPDq374qft7e_Nh-Ku-_fLzbbu5LI2Qby7auLe9YOwgmWM-F7lrbN7wza1n3HROioWvZdXKojRY9a7nmutVMcyGB9qIRV8Wbi-4R_a8EIaqDTzjnl4rztmZNzlhmFL-gDPoQEKw6ops0nhWjaulHHdTSj1r6UbRRuZ9Men8hQfZ_coAqGLeENTgEE9Xg3f_ofwEedpwk</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Leung, K.H.</creator><creator>Choy, K.L.</creator><creator>Ho, G.T.S.</creator><creator>Lee, Carman K.M.</creator><creator>Lam, H.Y.</creator><creator>Luk, C.C.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9252-1476</orcidid><orcidid>https://orcid.org/0000-0001-8577-4547</orcidid></search><sort><creationdate>20191115</creationdate><title>Prediction of B2C e-commerce order arrival using hybrid autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) for managing fluctuation of throughput in e-fulfilment centres</title><author>Leung, K.H. ; Choy, K.L. ; Ho, G.T.S. ; Lee, Carman K.M. ; Lam, H.Y. ; Luk, C.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-644f2916d3131b23a96fb529c874b91335087997d4ca3b162a2a6a1a237e0b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive neuro-fuzzy inference system (ANFIS)</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Arrivals</topic><topic>Artificial neural networks</topic><topic>Autoregressive (AR) model</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Batch processing</topic><topic>Decision support systems</topic><topic>E-commerce logistics</topic><topic>Economic forecasting</topic><topic>Electronic commerce</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Hybrid systems</topic><topic>Inference</topic><topic>Logistics</topic><topic>Order arrival prediction</topic><topic>Order picking</topic><topic>Variation</topic><topic>Warehouse postponement applications</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, K.H.</creatorcontrib><creatorcontrib>Choy, K.L.</creatorcontrib><creatorcontrib>Ho, G.T.S.</creatorcontrib><creatorcontrib>Lee, Carman K.M.</creatorcontrib><creatorcontrib>Lam, H.Y.</creatorcontrib><creatorcontrib>Luk, C.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, K.H.</au><au>Choy, K.L.</au><au>Ho, G.T.S.</au><au>Lee, Carman K.M.</au><au>Lam, H.Y.</au><au>Luk, C.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of B2C e-commerce order arrival using hybrid autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) for managing fluctuation of throughput in e-fulfilment centres</atitle><jtitle>Expert systems with applications</jtitle><date>2019-11-15</date><risdate>2019</risdate><volume>134</volume><spage>304</spage><epage>324</epage><pages>304-324</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A new study that forecasts the daily arrival pattern of e-commerce orders.•An AR-ANFIS model for e-order arrival prediction is proposed.•A two-stage model performance validation is introduced.•Experimental results indicate that the proposed model outperforms ARIMA model. The complexity of today's e-commerce logistics environment compels practitioners to achieve a higher level of operating efficiency. As it is infeasible for operators to process a large number of discrete e-orders individually, warehouse postponement, that is, delaying the execution of a logistics process until the last possible moment, is essential. Yet the question remains as to how one can accurately identify the timing for consolidating e-orders, and subsequently releasing the grouped e-orders for batch order picking. This is a subject, lacking previous research, but is fundamentally crucial in today's e-commerce logistics environment. This paper introduces an integrated autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) approach for forecasting e-commerce order arrivals. Two AR-ANFIS models are built for evaluating their prediction ability against ARIMA models. The experimental results confirm the suitability of the hybrid model for forecasting e-order arrivals. To make use of the model output, an algorithm is formulated to convert e-order arrival figures into cut-off time of order grouping. In this sense, this total solution, packaged as a decision support system, namely the E-order arrival prediction system, assists logistics practitioners in judging when to release the grouped e-orders for batch processing, and essentially improves their order handling capability.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2019.05.027</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9252-1476</orcidid><orcidid>https://orcid.org/0000-0001-8577-4547</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2019-11, Vol.134, p.304-324
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2264151877
source Elsevier ScienceDirect Journals
subjects Adaptive neuro-fuzzy inference system (ANFIS)
Adaptive systems
Algorithms
Arrivals
Artificial neural networks
Autoregressive (AR) model
Autoregressive models
Autoregressive processes
Batch processing
Decision support systems
E-commerce logistics
Economic forecasting
Electronic commerce
Fuzzy logic
Fuzzy systems
Hybrid systems
Inference
Logistics
Order arrival prediction
Order picking
Variation
Warehouse postponement applications
Warehouses
title Prediction of B2C e-commerce order arrival using hybrid autoregressive-adaptive neuro-fuzzy inference system (AR-ANFIS) for managing fluctuation of throughput in e-fulfilment centres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20B2C%20e-commerce%20order%20arrival%20using%20hybrid%20autoregressive-adaptive%20neuro-fuzzy%20inference%20system%20(AR-ANFIS)%20for%20managing%20fluctuation%20of%20throughput%20in%20e-fulfilment%20centres&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Leung,%20K.H.&rft.date=2019-11-15&rft.volume=134&rft.spage=304&rft.epage=324&rft.pages=304-324&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2019.05.027&rft_dat=%3Cproquest_cross%3E2264151877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264151877&rft_id=info:pmid/&rft_els_id=S0957417419303562&rfr_iscdi=true