Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process

The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-05, Vol.757, p.42-51
Hauptverfasser: Li, Jing, Wu, Sajian, Ma, Ping, Yang, Ying, Wu, Erdong, Xiong, Liangyin, Liu, Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue
container_start_page 42
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 757
creator Li, Jing
Wu, Sajian
Ma, Ping
Yang, Ying
Wu, Erdong
Xiong, Liangyin
Liu, Shi
description The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and grain boundaries of the ferritic powder during the first vacuum treatment. Yttrium oxide dispersoids are preferentially generated during the next oxidation treatment and become the precursors for the nanometric oxide precipitates in the subsequent hot consolidation. Nanometric Y2O3 and Y-Al-O precipitates are observed in the nominal compositions of Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.2Y, Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.5Y and Fe-14Cr-4.5Al-2W-0.5Ti-0.25Zr-0.8Y alloys and show a wide size distribution range from less than 10 nm to a maximum of 400 nm. No observable carbide, nitride inclusions or Al2O3 particles are identified. The improvement in the tensile strength of ODS alloys fabricated by the oxidation process is attributed to the dispersed nanometric oxide precipitates. The good ductility of the alloys is ascribed to the deficiency of ultrafine grains.
doi_str_mv 10.1016/j.msea.2019.04.088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2263308073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319305635</els_id><sourcerecordid>2263308073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7237ccc104e8bc59ae1735375470f3aecd81cfa79bb99466a06316ce22839bd43</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA69abpK-AGxmfMOJCXYc0vcUMnWZMUnH-vanj2tXdnO_cw0fIBYOcAauu1vkmoM45MJlDkUPTHJAFa2qRFVJUh2QBkrOsBCmOyUkIawBgBZQLEp6t8S5EP5k4eaT45YYpWjdSPXZ0g-ZDj9bogW6926KPFgN1PX25faX3uPQ3A9XD4HaB9rr1KRixo-0uwdSOEf2YSPdtO_1bmToMhnBGjno9BDz_u6fk_f7ubfmYrV4enpY3q8wI3sSs5qI2xjAosGlNKTWyWpSiLosaeqHRdA0zva5l20pZVJWGSrDKIOeNkG1XiFNyue9Nfz8nDFGt3TRPCorzSghooBYpxfep2UPw2Kuttxvtd4qBmuWqtZrlqlmugkIluQm63kOY9n9Z9CoYi6PBzno0UXXO_of_AEJHhHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263308073</pqid></control><display><type>article</type><title>Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Jing ; Wu, Sajian ; Ma, Ping ; Yang, Ying ; Wu, Erdong ; Xiong, Liangyin ; Liu, Shi</creator><creatorcontrib>Li, Jing ; Wu, Sajian ; Ma, Ping ; Yang, Ying ; Wu, Erdong ; Xiong, Liangyin ; Liu, Shi</creatorcontrib><description>The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and grain boundaries of the ferritic powder during the first vacuum treatment. Yttrium oxide dispersoids are preferentially generated during the next oxidation treatment and become the precursors for the nanometric oxide precipitates in the subsequent hot consolidation. Nanometric Y2O3 and Y-Al-O precipitates are observed in the nominal compositions of Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.2Y, Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.5Y and Fe-14Cr-4.5Al-2W-0.5Ti-0.25Zr-0.8Y alloys and show a wide size distribution range from less than 10 nm to a maximum of 400 nm. No observable carbide, nitride inclusions or Al2O3 particles are identified. The improvement in the tensile strength of ODS alloys fabricated by the oxidation process is attributed to the dispersed nanometric oxide precipitates. The good ductility of the alloys is ascribed to the deficiency of ultrafine grains.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.04.088</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy powders ; Aluminum oxide ; Chemical precipitation ; Dispersion hardening alloys ; Dispersions ; Ferrous alloys ; Grain boundaries ; Inclusions ; Internal oxidation ; Internal oxidation process ; Mechanical properties ; Microstructure and mechanical properties ; Nanometric Y-Al-O precipitates ; Oxidation ; Oxide dispersion strengthened ; Oxide dispersion strengthening ; Particle size distribution ; Precipitates ; Precursors ; Ultrafines ; Yttrium oxide</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-05, Vol.757, p.42-51</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 29, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7237ccc104e8bc59ae1735375470f3aecd81cfa79bb99466a06316ce22839bd43</citedby><cites>FETCH-LOGICAL-c328t-7237ccc104e8bc59ae1735375470f3aecd81cfa79bb99466a06316ce22839bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.04.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wu, Sajian</creatorcontrib><creatorcontrib>Ma, Ping</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Wu, Erdong</creatorcontrib><creatorcontrib>Xiong, Liangyin</creatorcontrib><creatorcontrib>Liu, Shi</creatorcontrib><title>Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and grain boundaries of the ferritic powder during the first vacuum treatment. Yttrium oxide dispersoids are preferentially generated during the next oxidation treatment and become the precursors for the nanometric oxide precipitates in the subsequent hot consolidation. Nanometric Y2O3 and Y-Al-O precipitates are observed in the nominal compositions of Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.2Y, Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.5Y and Fe-14Cr-4.5Al-2W-0.5Ti-0.25Zr-0.8Y alloys and show a wide size distribution range from less than 10 nm to a maximum of 400 nm. No observable carbide, nitride inclusions or Al2O3 particles are identified. The improvement in the tensile strength of ODS alloys fabricated by the oxidation process is attributed to the dispersed nanometric oxide precipitates. The good ductility of the alloys is ascribed to the deficiency of ultrafine grains.</description><subject>Alloy powders</subject><subject>Aluminum oxide</subject><subject>Chemical precipitation</subject><subject>Dispersion hardening alloys</subject><subject>Dispersions</subject><subject>Ferrous alloys</subject><subject>Grain boundaries</subject><subject>Inclusions</subject><subject>Internal oxidation</subject><subject>Internal oxidation process</subject><subject>Mechanical properties</subject><subject>Microstructure and mechanical properties</subject><subject>Nanometric Y-Al-O precipitates</subject><subject>Oxidation</subject><subject>Oxide dispersion strengthened</subject><subject>Oxide dispersion strengthening</subject><subject>Particle size distribution</subject><subject>Precipitates</subject><subject>Precursors</subject><subject>Ultrafines</subject><subject>Yttrium oxide</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA69abpK-AGxmfMOJCXYc0vcUMnWZMUnH-vanj2tXdnO_cw0fIBYOcAauu1vkmoM45MJlDkUPTHJAFa2qRFVJUh2QBkrOsBCmOyUkIawBgBZQLEp6t8S5EP5k4eaT45YYpWjdSPXZ0g-ZDj9bogW6926KPFgN1PX25faX3uPQ3A9XD4HaB9rr1KRixo-0uwdSOEf2YSPdtO_1bmToMhnBGjno9BDz_u6fk_f7ubfmYrV4enpY3q8wI3sSs5qI2xjAosGlNKTWyWpSiLosaeqHRdA0zva5l20pZVJWGSrDKIOeNkG1XiFNyue9Nfz8nDFGt3TRPCorzSghooBYpxfep2UPw2Kuttxvtd4qBmuWqtZrlqlmugkIluQm63kOY9n9Z9CoYi6PBzno0UXXO_of_AEJHhHg</recordid><startdate>20190529</startdate><enddate>20190529</enddate><creator>Li, Jing</creator><creator>Wu, Sajian</creator><creator>Ma, Ping</creator><creator>Yang, Ying</creator><creator>Wu, Erdong</creator><creator>Xiong, Liangyin</creator><creator>Liu, Shi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190529</creationdate><title>Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process</title><author>Li, Jing ; Wu, Sajian ; Ma, Ping ; Yang, Ying ; Wu, Erdong ; Xiong, Liangyin ; Liu, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7237ccc104e8bc59ae1735375470f3aecd81cfa79bb99466a06316ce22839bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy powders</topic><topic>Aluminum oxide</topic><topic>Chemical precipitation</topic><topic>Dispersion hardening alloys</topic><topic>Dispersions</topic><topic>Ferrous alloys</topic><topic>Grain boundaries</topic><topic>Inclusions</topic><topic>Internal oxidation</topic><topic>Internal oxidation process</topic><topic>Mechanical properties</topic><topic>Microstructure and mechanical properties</topic><topic>Nanometric Y-Al-O precipitates</topic><topic>Oxidation</topic><topic>Oxide dispersion strengthened</topic><topic>Oxide dispersion strengthening</topic><topic>Particle size distribution</topic><topic>Precipitates</topic><topic>Precursors</topic><topic>Ultrafines</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wu, Sajian</creatorcontrib><creatorcontrib>Ma, Ping</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Wu, Erdong</creatorcontrib><creatorcontrib>Xiong, Liangyin</creatorcontrib><creatorcontrib>Liu, Shi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing</au><au>Wu, Sajian</au><au>Ma, Ping</au><au>Yang, Ying</au><au>Wu, Erdong</au><au>Xiong, Liangyin</au><au>Liu, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-05-29</date><risdate>2019</risdate><volume>757</volume><spage>42</spage><epage>51</epage><pages>42-51</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and grain boundaries of the ferritic powder during the first vacuum treatment. Yttrium oxide dispersoids are preferentially generated during the next oxidation treatment and become the precursors for the nanometric oxide precipitates in the subsequent hot consolidation. Nanometric Y2O3 and Y-Al-O precipitates are observed in the nominal compositions of Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.2Y, Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.5Y and Fe-14Cr-4.5Al-2W-0.5Ti-0.25Zr-0.8Y alloys and show a wide size distribution range from less than 10 nm to a maximum of 400 nm. No observable carbide, nitride inclusions or Al2O3 particles are identified. The improvement in the tensile strength of ODS alloys fabricated by the oxidation process is attributed to the dispersed nanometric oxide precipitates. The good ductility of the alloys is ascribed to the deficiency of ultrafine grains.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.04.088</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-05, Vol.757, p.42-51
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2263308073
source Elsevier ScienceDirect Journals Complete
subjects Alloy powders
Aluminum oxide
Chemical precipitation
Dispersion hardening alloys
Dispersions
Ferrous alloys
Grain boundaries
Inclusions
Internal oxidation
Internal oxidation process
Mechanical properties
Microstructure and mechanical properties
Nanometric Y-Al-O precipitates
Oxidation
Oxide dispersion strengthened
Oxide dispersion strengthening
Particle size distribution
Precipitates
Precursors
Ultrafines
Yttrium oxide
title Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20and%20mechanical%20properties%20of%20ODS%20FeCrAl%20alloys%20fabricated%20by%20an%20internal%20oxidation%20process&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Li,%20Jing&rft.date=2019-05-29&rft.volume=757&rft.spage=42&rft.epage=51&rft.pages=42-51&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.04.088&rft_dat=%3Cproquest_cross%3E2263308073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263308073&rft_id=info:pmid/&rft_els_id=S0921509319305635&rfr_iscdi=true