Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process
The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-05, Vol.757, p.42-51 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | |
container_start_page | 42 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 757 |
creator | Li, Jing Wu, Sajian Ma, Ping Yang, Ying Wu, Erdong Xiong, Liangyin Liu, Shi |
description | The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and grain boundaries of the ferritic powder during the first vacuum treatment. Yttrium oxide dispersoids are preferentially generated during the next oxidation treatment and become the precursors for the nanometric oxide precipitates in the subsequent hot consolidation. Nanometric Y2O3 and Y-Al-O precipitates are observed in the nominal compositions of Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.2Y, Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.5Y and Fe-14Cr-4.5Al-2W-0.5Ti-0.25Zr-0.8Y alloys and show a wide size distribution range from less than 10 nm to a maximum of 400 nm. No observable carbide, nitride inclusions or Al2O3 particles are identified. The improvement in the tensile strength of ODS alloys fabricated by the oxidation process is attributed to the dispersed nanometric oxide precipitates. The good ductility of the alloys is ascribed to the deficiency of ultrafine grains. |
doi_str_mv | 10.1016/j.msea.2019.04.088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2263308073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319305635</els_id><sourcerecordid>2263308073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7237ccc104e8bc59ae1735375470f3aecd81cfa79bb99466a06316ce22839bd43</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA69abpK-AGxmfMOJCXYc0vcUMnWZMUnH-vanj2tXdnO_cw0fIBYOcAauu1vkmoM45MJlDkUPTHJAFa2qRFVJUh2QBkrOsBCmOyUkIawBgBZQLEp6t8S5EP5k4eaT45YYpWjdSPXZ0g-ZDj9bogW6926KPFgN1PX25faX3uPQ3A9XD4HaB9rr1KRixo-0uwdSOEf2YSPdtO_1bmToMhnBGjno9BDz_u6fk_f7ubfmYrV4enpY3q8wI3sSs5qI2xjAosGlNKTWyWpSiLosaeqHRdA0zva5l20pZVJWGSrDKIOeNkG1XiFNyue9Nfz8nDFGt3TRPCorzSghooBYpxfep2UPw2Kuttxvtd4qBmuWqtZrlqlmugkIluQm63kOY9n9Z9CoYi6PBzno0UXXO_of_AEJHhHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263308073</pqid></control><display><type>article</type><title>Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Jing ; Wu, Sajian ; Ma, Ping ; Yang, Ying ; Wu, Erdong ; Xiong, Liangyin ; Liu, Shi</creator><creatorcontrib>Li, Jing ; Wu, Sajian ; Ma, Ping ; Yang, Ying ; Wu, Erdong ; Xiong, Liangyin ; Liu, Shi</creatorcontrib><description>The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and grain boundaries of the ferritic powder during the first vacuum treatment. Yttrium oxide dispersoids are preferentially generated during the next oxidation treatment and become the precursors for the nanometric oxide precipitates in the subsequent hot consolidation. Nanometric Y2O3 and Y-Al-O precipitates are observed in the nominal compositions of Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.2Y, Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.5Y and Fe-14Cr-4.5Al-2W-0.5Ti-0.25Zr-0.8Y alloys and show a wide size distribution range from less than 10 nm to a maximum of 400 nm. No observable carbide, nitride inclusions or Al2O3 particles are identified. The improvement in the tensile strength of ODS alloys fabricated by the oxidation process is attributed to the dispersed nanometric oxide precipitates. The good ductility of the alloys is ascribed to the deficiency of ultrafine grains.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.04.088</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy powders ; Aluminum oxide ; Chemical precipitation ; Dispersion hardening alloys ; Dispersions ; Ferrous alloys ; Grain boundaries ; Inclusions ; Internal oxidation ; Internal oxidation process ; Mechanical properties ; Microstructure and mechanical properties ; Nanometric Y-Al-O precipitates ; Oxidation ; Oxide dispersion strengthened ; Oxide dispersion strengthening ; Particle size distribution ; Precipitates ; Precursors ; Ultrafines ; Yttrium oxide</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-05, Vol.757, p.42-51</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 29, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7237ccc104e8bc59ae1735375470f3aecd81cfa79bb99466a06316ce22839bd43</citedby><cites>FETCH-LOGICAL-c328t-7237ccc104e8bc59ae1735375470f3aecd81cfa79bb99466a06316ce22839bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.04.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wu, Sajian</creatorcontrib><creatorcontrib>Ma, Ping</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Wu, Erdong</creatorcontrib><creatorcontrib>Xiong, Liangyin</creatorcontrib><creatorcontrib>Liu, Shi</creatorcontrib><title>Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and grain boundaries of the ferritic powder during the first vacuum treatment. Yttrium oxide dispersoids are preferentially generated during the next oxidation treatment and become the precursors for the nanometric oxide precipitates in the subsequent hot consolidation. Nanometric Y2O3 and Y-Al-O precipitates are observed in the nominal compositions of Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.2Y, Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.5Y and Fe-14Cr-4.5Al-2W-0.5Ti-0.25Zr-0.8Y alloys and show a wide size distribution range from less than 10 nm to a maximum of 400 nm. No observable carbide, nitride inclusions or Al2O3 particles are identified. The improvement in the tensile strength of ODS alloys fabricated by the oxidation process is attributed to the dispersed nanometric oxide precipitates. The good ductility of the alloys is ascribed to the deficiency of ultrafine grains.</description><subject>Alloy powders</subject><subject>Aluminum oxide</subject><subject>Chemical precipitation</subject><subject>Dispersion hardening alloys</subject><subject>Dispersions</subject><subject>Ferrous alloys</subject><subject>Grain boundaries</subject><subject>Inclusions</subject><subject>Internal oxidation</subject><subject>Internal oxidation process</subject><subject>Mechanical properties</subject><subject>Microstructure and mechanical properties</subject><subject>Nanometric Y-Al-O precipitates</subject><subject>Oxidation</subject><subject>Oxide dispersion strengthened</subject><subject>Oxide dispersion strengthening</subject><subject>Particle size distribution</subject><subject>Precipitates</subject><subject>Precursors</subject><subject>Ultrafines</subject><subject>Yttrium oxide</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA69abpK-AGxmfMOJCXYc0vcUMnWZMUnH-vanj2tXdnO_cw0fIBYOcAauu1vkmoM45MJlDkUPTHJAFa2qRFVJUh2QBkrOsBCmOyUkIawBgBZQLEp6t8S5EP5k4eaT45YYpWjdSPXZ0g-ZDj9bogW6926KPFgN1PX25faX3uPQ3A9XD4HaB9rr1KRixo-0uwdSOEf2YSPdtO_1bmToMhnBGjno9BDz_u6fk_f7ubfmYrV4enpY3q8wI3sSs5qI2xjAosGlNKTWyWpSiLosaeqHRdA0zva5l20pZVJWGSrDKIOeNkG1XiFNyue9Nfz8nDFGt3TRPCorzSghooBYpxfep2UPw2Kuttxvtd4qBmuWqtZrlqlmugkIluQm63kOY9n9Z9CoYi6PBzno0UXXO_of_AEJHhHg</recordid><startdate>20190529</startdate><enddate>20190529</enddate><creator>Li, Jing</creator><creator>Wu, Sajian</creator><creator>Ma, Ping</creator><creator>Yang, Ying</creator><creator>Wu, Erdong</creator><creator>Xiong, Liangyin</creator><creator>Liu, Shi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190529</creationdate><title>Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process</title><author>Li, Jing ; Wu, Sajian ; Ma, Ping ; Yang, Ying ; Wu, Erdong ; Xiong, Liangyin ; Liu, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7237ccc104e8bc59ae1735375470f3aecd81cfa79bb99466a06316ce22839bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy powders</topic><topic>Aluminum oxide</topic><topic>Chemical precipitation</topic><topic>Dispersion hardening alloys</topic><topic>Dispersions</topic><topic>Ferrous alloys</topic><topic>Grain boundaries</topic><topic>Inclusions</topic><topic>Internal oxidation</topic><topic>Internal oxidation process</topic><topic>Mechanical properties</topic><topic>Microstructure and mechanical properties</topic><topic>Nanometric Y-Al-O precipitates</topic><topic>Oxidation</topic><topic>Oxide dispersion strengthened</topic><topic>Oxide dispersion strengthening</topic><topic>Particle size distribution</topic><topic>Precipitates</topic><topic>Precursors</topic><topic>Ultrafines</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wu, Sajian</creatorcontrib><creatorcontrib>Ma, Ping</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Wu, Erdong</creatorcontrib><creatorcontrib>Xiong, Liangyin</creatorcontrib><creatorcontrib>Liu, Shi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing</au><au>Wu, Sajian</au><au>Ma, Ping</au><au>Yang, Ying</au><au>Wu, Erdong</au><au>Xiong, Liangyin</au><au>Liu, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-05-29</date><risdate>2019</risdate><volume>757</volume><spage>42</spage><epage>51</epage><pages>42-51</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The fabrication of oxide dispersion strengthened (ODS) FeCrAl alloys by an innovative internal oxidation process is presented herein. The internal oxidation process for a precursor ODS FeCrAl alloy powder consists of two consecutive procedures. Active Y is segregated and enriched on the surface and grain boundaries of the ferritic powder during the first vacuum treatment. Yttrium oxide dispersoids are preferentially generated during the next oxidation treatment and become the precursors for the nanometric oxide precipitates in the subsequent hot consolidation. Nanometric Y2O3 and Y-Al-O precipitates are observed in the nominal compositions of Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.2Y, Fe-16Cr-4.5Al-2W-0.5Ti-0.5V-0.5Y and Fe-14Cr-4.5Al-2W-0.5Ti-0.25Zr-0.8Y alloys and show a wide size distribution range from less than 10 nm to a maximum of 400 nm. No observable carbide, nitride inclusions or Al2O3 particles are identified. The improvement in the tensile strength of ODS alloys fabricated by the oxidation process is attributed to the dispersed nanometric oxide precipitates. The good ductility of the alloys is ascribed to the deficiency of ultrafine grains.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.04.088</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-05, Vol.757, p.42-51 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2263308073 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Alloy powders Aluminum oxide Chemical precipitation Dispersion hardening alloys Dispersions Ferrous alloys Grain boundaries Inclusions Internal oxidation Internal oxidation process Mechanical properties Microstructure and mechanical properties Nanometric Y-Al-O precipitates Oxidation Oxide dispersion strengthened Oxide dispersion strengthening Particle size distribution Precipitates Precursors Ultrafines Yttrium oxide |
title | Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20and%20mechanical%20properties%20of%20ODS%20FeCrAl%20alloys%20fabricated%20by%20an%20internal%20oxidation%20process&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Li,%20Jing&rft.date=2019-05-29&rft.volume=757&rft.spage=42&rft.epage=51&rft.pages=42-51&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.04.088&rft_dat=%3Cproquest_cross%3E2263308073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263308073&rft_id=info:pmid/&rft_els_id=S0921509319305635&rfr_iscdi=true |