Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents

The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital vide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2019-11, Vol.78 (22), p.31807-31821
Hauptverfasser: Adeliyi, Timothy, Olugbara, Oludayo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31821
container_issue 22
container_start_page 31807
container_title Multimedia tools and applications
container_volume 78
creator Adeliyi, Timothy
Olugbara, Oludayo
description The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital video contents for transmission over an internet protocol infrastructure. However, transmitting compressed video color images still has an intrinsic limitation of high bandwidth consumption. Simple linear iterative clustering algorithm was applied for binary segmentation of video color images to circumvent the challenge of efficiently transmitting video contents. Compressed binary segmented images are generally fast to transmit and require lower bandwidth consumption as opposed to compressed video color images. However, since color images contain more useful information than binary image counterparts, evaluation of binary segmentation results was performed using the mean opinion score metric to determine user quality of experience of the transmitted video contents. The practical application of our method will lead to the development of a novel encoder that can deliver binary video contents faster, hence solving the bandwidth hiccup.
doi_str_mv 10.1007/s11042-019-08008-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2263018297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263018297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ea272bd57f75dc334aabb5497d9f367a27e94865e44c00b98502ff2cc7c5d6d43</originalsourceid><addsrcrecordid>eNp9kEtPxCAUhRujiePjD7gicY1eoJR2acZnMokbXRNKbyedVKjAmNRfL-NM4s4VhHu-cw-nKK4Y3DAAdRsZg5JTYA2FGqCm81GxYFIJqhRnx_kuaqBKAjstzmLcALBK8nJRzPeY0KbBrUk044AuEd9u8kskgyPOOxqTSYN3Jszka-jQk-HDrJFE_Nyis0h6H4hxZpy_dybbiIFMGCxOOyoS35NuWA_JjAfcepfymnhRnPRmjHh5OM-L98eHt-UzXb0-vSzvVtQK1iSKhivedlL1SnZWiNKYtpVlo7qmF5XKU2zKupJYlhagbWoJvO-5tcrKrupKcV5c732n4HPkmPTGb0MOHDXnlQBW80ZlFd-rbPAxBuz1FPJHw6wZ6F3Fel-xzhXr34r1nCGxh2IWuzWGP-t_qB-3dIIj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263018297</pqid></control><display><type>article</type><title>Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents</title><source>SpringerNature Journals</source><creator>Adeliyi, Timothy ; Olugbara, Oludayo</creator><creatorcontrib>Adeliyi, Timothy ; Olugbara, Oludayo</creatorcontrib><description>The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital video contents for transmission over an internet protocol infrastructure. However, transmitting compressed video color images still has an intrinsic limitation of high bandwidth consumption. Simple linear iterative clustering algorithm was applied for binary segmentation of video color images to circumvent the challenge of efficiently transmitting video contents. Compressed binary segmented images are generally fast to transmit and require lower bandwidth consumption as opposed to compressed video color images. However, since color images contain more useful information than binary image counterparts, evaluation of binary segmentation results was performed using the mean opinion score metric to determine user quality of experience of the transmitted video contents. The practical application of our method will lead to the development of a novel encoder that can deliver binary video contents faster, hence solving the bandwidth hiccup.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-08008-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bandwidths ; Clustering ; Coders ; Color imagery ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Digital imaging ; Digital video ; Image segmentation ; Image transmission ; IP (Internet Protocol) ; Multimedia Information Systems ; Object recognition ; Salience ; Special Purpose and Application-Based Systems ; User satisfaction ; Video compression ; Video transmission</subject><ispartof>Multimedia tools and applications, 2019-11, Vol.78 (22), p.31807-31821</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ea272bd57f75dc334aabb5497d9f367a27e94865e44c00b98502ff2cc7c5d6d43</citedby><cites>FETCH-LOGICAL-c319t-ea272bd57f75dc334aabb5497d9f367a27e94865e44c00b98502ff2cc7c5d6d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-08008-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-08008-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Adeliyi, Timothy</creatorcontrib><creatorcontrib>Olugbara, Oludayo</creatorcontrib><title>Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital video contents for transmission over an internet protocol infrastructure. However, transmitting compressed video color images still has an intrinsic limitation of high bandwidth consumption. Simple linear iterative clustering algorithm was applied for binary segmentation of video color images to circumvent the challenge of efficiently transmitting video contents. Compressed binary segmented images are generally fast to transmit and require lower bandwidth consumption as opposed to compressed video color images. However, since color images contain more useful information than binary image counterparts, evaluation of binary segmentation results was performed using the mean opinion score metric to determine user quality of experience of the transmitted video contents. The practical application of our method will lead to the development of a novel encoder that can deliver binary video contents faster, hence solving the bandwidth hiccup.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Clustering</subject><subject>Coders</subject><subject>Color imagery</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital imaging</subject><subject>Digital video</subject><subject>Image segmentation</subject><subject>Image transmission</subject><subject>IP (Internet Protocol)</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Salience</subject><subject>Special Purpose and Application-Based Systems</subject><subject>User satisfaction</subject><subject>Video compression</subject><subject>Video transmission</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPxCAUhRujiePjD7gicY1eoJR2acZnMokbXRNKbyedVKjAmNRfL-NM4s4VhHu-cw-nKK4Y3DAAdRsZg5JTYA2FGqCm81GxYFIJqhRnx_kuaqBKAjstzmLcALBK8nJRzPeY0KbBrUk044AuEd9u8kskgyPOOxqTSYN3Jszka-jQk-HDrJFE_Nyis0h6H4hxZpy_dybbiIFMGCxOOyoS35NuWA_JjAfcepfymnhRnPRmjHh5OM-L98eHt-UzXb0-vSzvVtQK1iSKhivedlL1SnZWiNKYtpVlo7qmF5XKU2zKupJYlhagbWoJvO-5tcrKrupKcV5c732n4HPkmPTGb0MOHDXnlQBW80ZlFd-rbPAxBuz1FPJHw6wZ6F3Fel-xzhXr34r1nCGxh2IWuzWGP-t_qB-3dIIj</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Adeliyi, Timothy</creator><creator>Olugbara, Oludayo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20191101</creationdate><title>Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents</title><author>Adeliyi, Timothy ; Olugbara, Oludayo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ea272bd57f75dc334aabb5497d9f367a27e94865e44c00b98502ff2cc7c5d6d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Clustering</topic><topic>Coders</topic><topic>Color imagery</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital imaging</topic><topic>Digital video</topic><topic>Image segmentation</topic><topic>Image transmission</topic><topic>IP (Internet Protocol)</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Salience</topic><topic>Special Purpose and Application-Based Systems</topic><topic>User satisfaction</topic><topic>Video compression</topic><topic>Video transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adeliyi, Timothy</creatorcontrib><creatorcontrib>Olugbara, Oludayo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adeliyi, Timothy</au><au>Olugbara, Oludayo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>78</volume><issue>22</issue><spage>31807</spage><epage>31821</epage><pages>31807-31821</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital video contents for transmission over an internet protocol infrastructure. However, transmitting compressed video color images still has an intrinsic limitation of high bandwidth consumption. Simple linear iterative clustering algorithm was applied for binary segmentation of video color images to circumvent the challenge of efficiently transmitting video contents. Compressed binary segmented images are generally fast to transmit and require lower bandwidth consumption as opposed to compressed video color images. However, since color images contain more useful information than binary image counterparts, evaluation of binary segmentation results was performed using the mean opinion score metric to determine user quality of experience of the transmitted video contents. The practical application of our method will lead to the development of a novel encoder that can deliver binary video contents faster, hence solving the bandwidth hiccup.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-08008-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2019-11, Vol.78 (22), p.31807-31821
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2263018297
source SpringerNature Journals
subjects Algorithms
Bandwidths
Clustering
Coders
Color imagery
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital imaging
Digital video
Image segmentation
Image transmission
IP (Internet Protocol)
Multimedia Information Systems
Object recognition
Salience
Special Purpose and Application-Based Systems
User satisfaction
Video compression
Video transmission
title Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20salient%20objects%20in%20non-stationary%20video%20image%20sequence%20for%20analyzing%20user%20perceptions%20of%20digital%20video%20contents&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Adeliyi,%20Timothy&rft.date=2019-11-01&rft.volume=78&rft.issue=22&rft.spage=31807&rft.epage=31821&rft.pages=31807-31821&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-08008-y&rft_dat=%3Cproquest_cross%3E2263018297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263018297&rft_id=info:pmid/&rfr_iscdi=true