Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents
The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital vide...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2019-11, Vol.78 (22), p.31807-31821 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31821 |
---|---|
container_issue | 22 |
container_start_page | 31807 |
container_title | Multimedia tools and applications |
container_volume | 78 |
creator | Adeliyi, Timothy Olugbara, Oludayo |
description | The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital video contents for transmission over an internet protocol infrastructure. However, transmitting compressed video color images still has an intrinsic limitation of high bandwidth consumption. Simple linear iterative clustering algorithm was applied for binary segmentation of video color images to circumvent the challenge of efficiently transmitting video contents. Compressed binary segmented images are generally fast to transmit and require lower bandwidth consumption as opposed to compressed video color images. However, since color images contain more useful information than binary image counterparts, evaluation of binary segmentation results was performed using the mean opinion score metric to determine user quality of experience of the transmitted video contents. The practical application of our method will lead to the development of a novel encoder that can deliver binary video contents faster, hence solving the bandwidth hiccup. |
doi_str_mv | 10.1007/s11042-019-08008-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2263018297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263018297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ea272bd57f75dc334aabb5497d9f367a27e94865e44c00b98502ff2cc7c5d6d43</originalsourceid><addsrcrecordid>eNp9kEtPxCAUhRujiePjD7gicY1eoJR2acZnMokbXRNKbyedVKjAmNRfL-NM4s4VhHu-cw-nKK4Y3DAAdRsZg5JTYA2FGqCm81GxYFIJqhRnx_kuaqBKAjstzmLcALBK8nJRzPeY0KbBrUk044AuEd9u8kskgyPOOxqTSYN3Jszka-jQk-HDrJFE_Nyis0h6H4hxZpy_dybbiIFMGCxOOyoS35NuWA_JjAfcepfymnhRnPRmjHh5OM-L98eHt-UzXb0-vSzvVtQK1iSKhivedlL1SnZWiNKYtpVlo7qmF5XKU2zKupJYlhagbWoJvO-5tcrKrupKcV5c732n4HPkmPTGb0MOHDXnlQBW80ZlFd-rbPAxBuz1FPJHw6wZ6F3Fel-xzhXr34r1nCGxh2IWuzWGP-t_qB-3dIIj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263018297</pqid></control><display><type>article</type><title>Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents</title><source>SpringerNature Journals</source><creator>Adeliyi, Timothy ; Olugbara, Oludayo</creator><creatorcontrib>Adeliyi, Timothy ; Olugbara, Oludayo</creatorcontrib><description>The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital video contents for transmission over an internet protocol infrastructure. However, transmitting compressed video color images still has an intrinsic limitation of high bandwidth consumption. Simple linear iterative clustering algorithm was applied for binary segmentation of video color images to circumvent the challenge of efficiently transmitting video contents. Compressed binary segmented images are generally fast to transmit and require lower bandwidth consumption as opposed to compressed video color images. However, since color images contain more useful information than binary image counterparts, evaluation of binary segmentation results was performed using the mean opinion score metric to determine user quality of experience of the transmitted video contents. The practical application of our method will lead to the development of a novel encoder that can deliver binary video contents faster, hence solving the bandwidth hiccup.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-08008-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bandwidths ; Clustering ; Coders ; Color imagery ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Digital imaging ; Digital video ; Image segmentation ; Image transmission ; IP (Internet Protocol) ; Multimedia Information Systems ; Object recognition ; Salience ; Special Purpose and Application-Based Systems ; User satisfaction ; Video compression ; Video transmission</subject><ispartof>Multimedia tools and applications, 2019-11, Vol.78 (22), p.31807-31821</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ea272bd57f75dc334aabb5497d9f367a27e94865e44c00b98502ff2cc7c5d6d43</citedby><cites>FETCH-LOGICAL-c319t-ea272bd57f75dc334aabb5497d9f367a27e94865e44c00b98502ff2cc7c5d6d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-08008-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-08008-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Adeliyi, Timothy</creatorcontrib><creatorcontrib>Olugbara, Oludayo</creatorcontrib><title>Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital video contents for transmission over an internet protocol infrastructure. However, transmitting compressed video color images still has an intrinsic limitation of high bandwidth consumption. Simple linear iterative clustering algorithm was applied for binary segmentation of video color images to circumvent the challenge of efficiently transmitting video contents. Compressed binary segmented images are generally fast to transmit and require lower bandwidth consumption as opposed to compressed video color images. However, since color images contain more useful information than binary image counterparts, evaluation of binary segmentation results was performed using the mean opinion score metric to determine user quality of experience of the transmitted video contents. The practical application of our method will lead to the development of a novel encoder that can deliver binary video contents faster, hence solving the bandwidth hiccup.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Clustering</subject><subject>Coders</subject><subject>Color imagery</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital imaging</subject><subject>Digital video</subject><subject>Image segmentation</subject><subject>Image transmission</subject><subject>IP (Internet Protocol)</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Salience</subject><subject>Special Purpose and Application-Based Systems</subject><subject>User satisfaction</subject><subject>Video compression</subject><subject>Video transmission</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPxCAUhRujiePjD7gicY1eoJR2acZnMokbXRNKbyedVKjAmNRfL-NM4s4VhHu-cw-nKK4Y3DAAdRsZg5JTYA2FGqCm81GxYFIJqhRnx_kuaqBKAjstzmLcALBK8nJRzPeY0KbBrUk044AuEd9u8kskgyPOOxqTSYN3Jszka-jQk-HDrJFE_Nyis0h6H4hxZpy_dybbiIFMGCxOOyoS35NuWA_JjAfcepfymnhRnPRmjHh5OM-L98eHt-UzXb0-vSzvVtQK1iSKhivedlL1SnZWiNKYtpVlo7qmF5XKU2zKupJYlhagbWoJvO-5tcrKrupKcV5c732n4HPkmPTGb0MOHDXnlQBW80ZlFd-rbPAxBuz1FPJHw6wZ6F3Fel-xzhXr34r1nCGxh2IWuzWGP-t_qB-3dIIj</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Adeliyi, Timothy</creator><creator>Olugbara, Oludayo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20191101</creationdate><title>Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents</title><author>Adeliyi, Timothy ; Olugbara, Oludayo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ea272bd57f75dc334aabb5497d9f367a27e94865e44c00b98502ff2cc7c5d6d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Clustering</topic><topic>Coders</topic><topic>Color imagery</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital imaging</topic><topic>Digital video</topic><topic>Image segmentation</topic><topic>Image transmission</topic><topic>IP (Internet Protocol)</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Salience</topic><topic>Special Purpose and Application-Based Systems</topic><topic>User satisfaction</topic><topic>Video compression</topic><topic>Video transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adeliyi, Timothy</creatorcontrib><creatorcontrib>Olugbara, Oludayo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adeliyi, Timothy</au><au>Olugbara, Oludayo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>78</volume><issue>22</issue><spage>31807</spage><epage>31821</epage><pages>31807-31821</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The ubiquitous utilization of video applications in recent years has made research on video quality of experience paramount. Lack of sufficient bandwidth deters the effective transmission of raw video contents to users. This bandwidth challenge has given rise to encoders for compressing digital video contents for transmission over an internet protocol infrastructure. However, transmitting compressed video color images still has an intrinsic limitation of high bandwidth consumption. Simple linear iterative clustering algorithm was applied for binary segmentation of video color images to circumvent the challenge of efficiently transmitting video contents. Compressed binary segmented images are generally fast to transmit and require lower bandwidth consumption as opposed to compressed video color images. However, since color images contain more useful information than binary image counterparts, evaluation of binary segmentation results was performed using the mean opinion score metric to determine user quality of experience of the transmitted video contents. The practical application of our method will lead to the development of a novel encoder that can deliver binary video contents faster, hence solving the bandwidth hiccup.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-08008-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2019-11, Vol.78 (22), p.31807-31821 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2263018297 |
source | SpringerNature Journals |
subjects | Algorithms Bandwidths Clustering Coders Color imagery Computer Communication Networks Computer Science Data Structures and Information Theory Digital imaging Digital video Image segmentation Image transmission IP (Internet Protocol) Multimedia Information Systems Object recognition Salience Special Purpose and Application-Based Systems User satisfaction Video compression Video transmission |
title | Detecting salient objects in non-stationary video image sequence for analyzing user perceptions of digital video contents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20salient%20objects%20in%20non-stationary%20video%20image%20sequence%20for%20analyzing%20user%20perceptions%20of%20digital%20video%20contents&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Adeliyi,%20Timothy&rft.date=2019-11-01&rft.volume=78&rft.issue=22&rft.spage=31807&rft.epage=31821&rft.pages=31807-31821&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-08008-y&rft_dat=%3Cproquest_cross%3E2263018297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263018297&rft_id=info:pmid/&rfr_iscdi=true |