Pre-Learning Environment Representations for Data-Efficient Neural Instruction Following

We consider the problem of learning to map from natural language instructions to state transitions (actions) in a data-efficient manner. Our method takes inspiration from the idea that it should be easier to ground language to concepts that have already been formed through pre-linguistic observation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Gaddy, David, Klein, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gaddy, David
Klein, Dan
description We consider the problem of learning to map from natural language instructions to state transitions (actions) in a data-efficient manner. Our method takes inspiration from the idea that it should be easier to ground language to concepts that have already been formed through pre-linguistic observation. We augment a baseline instruction-following learner with an initial environment-learning phase that uses observations of language-free state transitions to induce a suitable latent representation of actions before processing the instruction-following training data. We show that mapping to pre-learned representations substantially improves performance over systems whose representations are learned from limited instructional data alone.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2262976337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262976337</sourcerecordid><originalsourceid>FETCH-proquest_journals_22629763373</originalsourceid><addsrcrecordid>eNqNzEEKwjAUBNAgCBbtHQKuAzWxra61RUFExIW7EkoiKfGn_iR6fVvwAK5mYB4zIQkXYsU2a85nJPW-y7KMFyXPc5GQ-wUVOymJYOBBK3gbdPBUEOhV9aj80GQwDjzVDuleBskqrU1rRnJWEaWlR_ABYzsyWjtr3Wf4WpCpltar9Jdzsqyr2-7AenSvqHxoOhcRhqnhvODbshCiFP-pL_TZQq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262976337</pqid></control><display><type>article</type><title>Pre-Learning Environment Representations for Data-Efficient Neural Instruction Following</title><source>Free E- Journals</source><creator>Gaddy, David ; Klein, Dan</creator><creatorcontrib>Gaddy, David ; Klein, Dan</creatorcontrib><description>We consider the problem of learning to map from natural language instructions to state transitions (actions) in a data-efficient manner. Our method takes inspiration from the idea that it should be easier to ground language to concepts that have already been formed through pre-linguistic observation. We augment a baseline instruction-following learner with an initial environment-learning phase that uses observations of language-free state transitions to induce a suitable latent representation of actions before processing the instruction-following training data. We show that mapping to pre-learned representations substantially improves performance over systems whose representations are learned from limited instructional data alone.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Learning ; Mapping ; Performance enhancement ; Representations</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gaddy, David</creatorcontrib><creatorcontrib>Klein, Dan</creatorcontrib><title>Pre-Learning Environment Representations for Data-Efficient Neural Instruction Following</title><title>arXiv.org</title><description>We consider the problem of learning to map from natural language instructions to state transitions (actions) in a data-efficient manner. Our method takes inspiration from the idea that it should be easier to ground language to concepts that have already been formed through pre-linguistic observation. We augment a baseline instruction-following learner with an initial environment-learning phase that uses observations of language-free state transitions to induce a suitable latent representation of actions before processing the instruction-following training data. We show that mapping to pre-learned representations substantially improves performance over systems whose representations are learned from limited instructional data alone.</description><subject>Learning</subject><subject>Mapping</subject><subject>Performance enhancement</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzEEKwjAUBNAgCBbtHQKuAzWxra61RUFExIW7EkoiKfGn_iR6fVvwAK5mYB4zIQkXYsU2a85nJPW-y7KMFyXPc5GQ-wUVOymJYOBBK3gbdPBUEOhV9aj80GQwDjzVDuleBskqrU1rRnJWEaWlR_ABYzsyWjtr3Wf4WpCpltar9Jdzsqyr2-7AenSvqHxoOhcRhqnhvODbshCiFP-pL_TZQq8</recordid><startdate>20190723</startdate><enddate>20190723</enddate><creator>Gaddy, David</creator><creator>Klein, Dan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190723</creationdate><title>Pre-Learning Environment Representations for Data-Efficient Neural Instruction Following</title><author>Gaddy, David ; Klein, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22629763373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Learning</topic><topic>Mapping</topic><topic>Performance enhancement</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaddy, David</creatorcontrib><creatorcontrib>Klein, Dan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaddy, David</au><au>Klein, Dan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pre-Learning Environment Representations for Data-Efficient Neural Instruction Following</atitle><jtitle>arXiv.org</jtitle><date>2019-07-23</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of learning to map from natural language instructions to state transitions (actions) in a data-efficient manner. Our method takes inspiration from the idea that it should be easier to ground language to concepts that have already been formed through pre-linguistic observation. We augment a baseline instruction-following learner with an initial environment-learning phase that uses observations of language-free state transitions to induce a suitable latent representation of actions before processing the instruction-following training data. We show that mapping to pre-learned representations substantially improves performance over systems whose representations are learned from limited instructional data alone.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2262976337
source Free E- Journals
subjects Learning
Mapping
Performance enhancement
Representations
title Pre-Learning Environment Representations for Data-Efficient Neural Instruction Following
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pre-Learning%20Environment%20Representations%20for%20Data-Efficient%20Neural%20Instruction%20Following&rft.jtitle=arXiv.org&rft.au=Gaddy,%20David&rft.date=2019-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2262976337%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262976337&rft_id=info:pmid/&rfr_iscdi=true