Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts
[Display omitted] •Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation. The mitigation of carbon emissi...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2019-10, Vol.253, p.713-721 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 721 |
---|---|
container_issue | |
container_start_page | 713 |
container_title | Fuel (Guildford) |
container_volume | 253 |
creator | Monteiro, Wesley F. Vieira, Michele O. Calgaro, Camila O. Perez-Lopez, Oscar W. Ligabue, Rosane A. |
description | [Display omitted]
•Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation.
The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO2), methane (CH4) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO2 and CH4 conversion |
doi_str_mv | 10.1016/j.fuel.2019.05.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262705221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119307641</els_id><sourcerecordid>2262705221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-532177052c6494f6d89ba6c52a9f72fa2c2b92f271466a03245fb70f37c18243</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLg-vEHPAU8tyavbdKCF1k_YcHLXjyFNE00ZZusSSrsvzdlPXuaxzAz771B6IaSkhLK7sbSzHpXAqFdSZoywwla0ZZXBadNdYpWJKsKqBg9RxcxjoQQ3jb1Cn08hgMO2vgwWfeJvcGTTl_SaTzHhZj8YI3VA455mCcs3YD3wSfvZMpsskkuE3bS-TT3GiuZ5O4QU7xCZ0buor7-w0u0fX7arl-LzfvL2_phU6iadKloKqCckwYUq7vasKHteslUA7IzHIwEBX0HBjitGZOkgroxPSem4oq2UFeX6PYYm6_6nnVMYvRzcHmjAGCwJAPNKjiqVPAx5n_FPthJhoOgRCwNilEsDYqlQUEakSGb7o8mnc__sTqIqKx2Sg82aJXE4O1_9l9Ronnt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262705221</pqid></control><display><type>article</type><title>Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts</title><source>Access via ScienceDirect (Elsevier)</source><creator>Monteiro, Wesley F. ; Vieira, Michele O. ; Calgaro, Camila O. ; Perez-Lopez, Oscar W. ; Ligabue, Rosane A.</creator><creatorcontrib>Monteiro, Wesley F. ; Vieira, Michele O. ; Calgaro, Camila O. ; Perez-Lopez, Oscar W. ; Ligabue, Rosane A.</creatorcontrib><description>[Display omitted]
•Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation.
The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO2), methane (CH4) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO2 and CH4 conversion <5%). However, when Ni-NaTNT and Ni-HTNT were used as catalyst, CO2 and CH4 conversions were of 35 and 27% (Ni-NaTNT) and 70 and 74% (Ni-HTNT), respectively. Both catalysts showed good stability keeping CO2 and CH4 conversions at 700 °C during 5 h of reaction. Additionally, although conversion values reached with Ni-NaTNT were lower, the sodium presence in this catalyst inhibits to coke formation when compared to Ni-HTNT.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.05.019</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon dioxide ; Catalysts ; Catalytic activity ; Catalytic converters ; Climate change ; Cobalt ; Conversion ; Copper ; Dry methane reforming ; Metals ; Methane ; Mitigation ; Nanoparticles ; Nanotechnology ; Nanotubes ; Nickel ; Organic chemistry ; Reforming ; Sodium ; Syngas production ; Synthesis gas ; Titanate nanotubes ; Zinc</subject><ispartof>Fuel (Guildford), 2019-10, Vol.253, p.713-721</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-532177052c6494f6d89ba6c52a9f72fa2c2b92f271466a03245fb70f37c18243</citedby><cites>FETCH-LOGICAL-c409t-532177052c6494f6d89ba6c52a9f72fa2c2b92f271466a03245fb70f37c18243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2019.05.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Monteiro, Wesley F.</creatorcontrib><creatorcontrib>Vieira, Michele O.</creatorcontrib><creatorcontrib>Calgaro, Camila O.</creatorcontrib><creatorcontrib>Perez-Lopez, Oscar W.</creatorcontrib><creatorcontrib>Ligabue, Rosane A.</creatorcontrib><title>Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts</title><title>Fuel (Guildford)</title><description>[Display omitted]
•Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation.
The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO2), methane (CH4) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO2 and CH4 conversion <5%). However, when Ni-NaTNT and Ni-HTNT were used as catalyst, CO2 and CH4 conversions were of 35 and 27% (Ni-NaTNT) and 70 and 74% (Ni-HTNT), respectively. Both catalysts showed good stability keeping CO2 and CH4 conversions at 700 °C during 5 h of reaction. Additionally, although conversion values reached with Ni-NaTNT were lower, the sodium presence in this catalyst inhibits to coke formation when compared to Ni-HTNT.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Climate change</subject><subject>Cobalt</subject><subject>Conversion</subject><subject>Copper</subject><subject>Dry methane reforming</subject><subject>Metals</subject><subject>Methane</subject><subject>Mitigation</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Reforming</subject><subject>Sodium</subject><subject>Syngas production</subject><subject>Synthesis gas</subject><subject>Titanate nanotubes</subject><subject>Zinc</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLg-vEHPAU8tyavbdKCF1k_YcHLXjyFNE00ZZusSSrsvzdlPXuaxzAz771B6IaSkhLK7sbSzHpXAqFdSZoywwla0ZZXBadNdYpWJKsKqBg9RxcxjoQQ3jb1Cn08hgMO2vgwWfeJvcGTTl_SaTzHhZj8YI3VA455mCcs3YD3wSfvZMpsskkuE3bS-TT3GiuZ5O4QU7xCZ0buor7-w0u0fX7arl-LzfvL2_phU6iadKloKqCckwYUq7vasKHteslUA7IzHIwEBX0HBjitGZOkgroxPSem4oq2UFeX6PYYm6_6nnVMYvRzcHmjAGCwJAPNKjiqVPAx5n_FPthJhoOgRCwNilEsDYqlQUEakSGb7o8mnc__sTqIqKx2Sg82aJXE4O1_9l9Ronnt</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Monteiro, Wesley F.</creator><creator>Vieira, Michele O.</creator><creator>Calgaro, Camila O.</creator><creator>Perez-Lopez, Oscar W.</creator><creator>Ligabue, Rosane A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20191001</creationdate><title>Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts</title><author>Monteiro, Wesley F. ; Vieira, Michele O. ; Calgaro, Camila O. ; Perez-Lopez, Oscar W. ; Ligabue, Rosane A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-532177052c6494f6d89ba6c52a9f72fa2c2b92f271466a03245fb70f37c18243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Climate change</topic><topic>Cobalt</topic><topic>Conversion</topic><topic>Copper</topic><topic>Dry methane reforming</topic><topic>Metals</topic><topic>Methane</topic><topic>Mitigation</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Reforming</topic><topic>Sodium</topic><topic>Syngas production</topic><topic>Synthesis gas</topic><topic>Titanate nanotubes</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Wesley F.</creatorcontrib><creatorcontrib>Vieira, Michele O.</creatorcontrib><creatorcontrib>Calgaro, Camila O.</creatorcontrib><creatorcontrib>Perez-Lopez, Oscar W.</creatorcontrib><creatorcontrib>Ligabue, Rosane A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Wesley F.</au><au>Vieira, Michele O.</au><au>Calgaro, Camila O.</au><au>Perez-Lopez, Oscar W.</au><au>Ligabue, Rosane A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>253</volume><spage>713</spage><epage>721</epage><pages>713-721</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation.
The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO2), methane (CH4) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO2 and CH4 conversion <5%). However, when Ni-NaTNT and Ni-HTNT were used as catalyst, CO2 and CH4 conversions were of 35 and 27% (Ni-NaTNT) and 70 and 74% (Ni-HTNT), respectively. Both catalysts showed good stability keeping CO2 and CH4 conversions at 700 °C during 5 h of reaction. Additionally, although conversion values reached with Ni-NaTNT were lower, the sodium presence in this catalyst inhibits to coke formation when compared to Ni-HTNT.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.05.019</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2019-10, Vol.253, p.713-721 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2262705221 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon dioxide Catalysts Catalytic activity Catalytic converters Climate change Cobalt Conversion Copper Dry methane reforming Metals Methane Mitigation Nanoparticles Nanotechnology Nanotubes Nickel Organic chemistry Reforming Sodium Syngas production Synthesis gas Titanate nanotubes Zinc |
title | Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dry%20reforming%20of%20methane%20using%20modified%20sodium%20and%20protonated%20titanate%20nanotube%20catalysts&rft.jtitle=Fuel%20(Guildford)&rft.au=Monteiro,%20Wesley%20F.&rft.date=2019-10-01&rft.volume=253&rft.spage=713&rft.epage=721&rft.pages=713-721&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.05.019&rft_dat=%3Cproquest_cross%3E2262705221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262705221&rft_id=info:pmid/&rft_els_id=S0016236119307641&rfr_iscdi=true |