Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts

[Display omitted] •Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation. The mitigation of carbon emissi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2019-10, Vol.253, p.713-721
Hauptverfasser: Monteiro, Wesley F., Vieira, Michele O., Calgaro, Camila O., Perez-Lopez, Oscar W., Ligabue, Rosane A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue
container_start_page 713
container_title Fuel (Guildford)
container_volume 253
creator Monteiro, Wesley F.
Vieira, Michele O.
Calgaro, Camila O.
Perez-Lopez, Oscar W.
Ligabue, Rosane A.
description [Display omitted] •Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation. The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO2), methane (CH4) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO2 and CH4 conversion
doi_str_mv 10.1016/j.fuel.2019.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262705221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119307641</els_id><sourcerecordid>2262705221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-532177052c6494f6d89ba6c52a9f72fa2c2b92f271466a03245fb70f37c18243</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLg-vEHPAU8tyavbdKCF1k_YcHLXjyFNE00ZZusSSrsvzdlPXuaxzAz771B6IaSkhLK7sbSzHpXAqFdSZoywwla0ZZXBadNdYpWJKsKqBg9RxcxjoQQ3jb1Cn08hgMO2vgwWfeJvcGTTl_SaTzHhZj8YI3VA455mCcs3YD3wSfvZMpsskkuE3bS-TT3GiuZ5O4QU7xCZ0buor7-w0u0fX7arl-LzfvL2_phU6iadKloKqCckwYUq7vasKHteslUA7IzHIwEBX0HBjitGZOkgroxPSem4oq2UFeX6PYYm6_6nnVMYvRzcHmjAGCwJAPNKjiqVPAx5n_FPthJhoOgRCwNilEsDYqlQUEakSGb7o8mnc__sTqIqKx2Sg82aJXE4O1_9l9Ronnt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262705221</pqid></control><display><type>article</type><title>Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts</title><source>Access via ScienceDirect (Elsevier)</source><creator>Monteiro, Wesley F. ; Vieira, Michele O. ; Calgaro, Camila O. ; Perez-Lopez, Oscar W. ; Ligabue, Rosane A.</creator><creatorcontrib>Monteiro, Wesley F. ; Vieira, Michele O. ; Calgaro, Camila O. ; Perez-Lopez, Oscar W. ; Ligabue, Rosane A.</creatorcontrib><description>[Display omitted] •Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation. The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO2), methane (CH4) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO2 and CH4 conversion &lt;5%). However, when Ni-NaTNT and Ni-HTNT were used as catalyst, CO2 and CH4 conversions were of 35 and 27% (Ni-NaTNT) and 70 and 74% (Ni-HTNT), respectively. Both catalysts showed good stability keeping CO2 and CH4 conversions at 700 °C during 5 h of reaction. Additionally, although conversion values reached with Ni-NaTNT were lower, the sodium presence in this catalyst inhibits to coke formation when compared to Ni-HTNT.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.05.019</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon dioxide ; Catalysts ; Catalytic activity ; Catalytic converters ; Climate change ; Cobalt ; Conversion ; Copper ; Dry methane reforming ; Metals ; Methane ; Mitigation ; Nanoparticles ; Nanotechnology ; Nanotubes ; Nickel ; Organic chemistry ; Reforming ; Sodium ; Syngas production ; Synthesis gas ; Titanate nanotubes ; Zinc</subject><ispartof>Fuel (Guildford), 2019-10, Vol.253, p.713-721</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-532177052c6494f6d89ba6c52a9f72fa2c2b92f271466a03245fb70f37c18243</citedby><cites>FETCH-LOGICAL-c409t-532177052c6494f6d89ba6c52a9f72fa2c2b92f271466a03245fb70f37c18243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2019.05.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Monteiro, Wesley F.</creatorcontrib><creatorcontrib>Vieira, Michele O.</creatorcontrib><creatorcontrib>Calgaro, Camila O.</creatorcontrib><creatorcontrib>Perez-Lopez, Oscar W.</creatorcontrib><creatorcontrib>Ligabue, Rosane A.</creatorcontrib><title>Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts</title><title>Fuel (Guildford)</title><description>[Display omitted] •Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation. The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO2), methane (CH4) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO2 and CH4 conversion &lt;5%). However, when Ni-NaTNT and Ni-HTNT were used as catalyst, CO2 and CH4 conversions were of 35 and 27% (Ni-NaTNT) and 70 and 74% (Ni-HTNT), respectively. Both catalysts showed good stability keeping CO2 and CH4 conversions at 700 °C during 5 h of reaction. Additionally, although conversion values reached with Ni-NaTNT were lower, the sodium presence in this catalyst inhibits to coke formation when compared to Ni-HTNT.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Climate change</subject><subject>Cobalt</subject><subject>Conversion</subject><subject>Copper</subject><subject>Dry methane reforming</subject><subject>Metals</subject><subject>Methane</subject><subject>Mitigation</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Reforming</subject><subject>Sodium</subject><subject>Syngas production</subject><subject>Synthesis gas</subject><subject>Titanate nanotubes</subject><subject>Zinc</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLg-vEHPAU8tyavbdKCF1k_YcHLXjyFNE00ZZusSSrsvzdlPXuaxzAz771B6IaSkhLK7sbSzHpXAqFdSZoywwla0ZZXBadNdYpWJKsKqBg9RxcxjoQQ3jb1Cn08hgMO2vgwWfeJvcGTTl_SaTzHhZj8YI3VA455mCcs3YD3wSfvZMpsskkuE3bS-TT3GiuZ5O4QU7xCZ0buor7-w0u0fX7arl-LzfvL2_phU6iadKloKqCckwYUq7vasKHteslUA7IzHIwEBX0HBjitGZOkgroxPSem4oq2UFeX6PYYm6_6nnVMYvRzcHmjAGCwJAPNKjiqVPAx5n_FPthJhoOgRCwNilEsDYqlQUEakSGb7o8mnc__sTqIqKx2Sg82aJXE4O1_9l9Ronnt</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Monteiro, Wesley F.</creator><creator>Vieira, Michele O.</creator><creator>Calgaro, Camila O.</creator><creator>Perez-Lopez, Oscar W.</creator><creator>Ligabue, Rosane A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20191001</creationdate><title>Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts</title><author>Monteiro, Wesley F. ; Vieira, Michele O. ; Calgaro, Camila O. ; Perez-Lopez, Oscar W. ; Ligabue, Rosane A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-532177052c6494f6d89ba6c52a9f72fa2c2b92f271466a03245fb70f37c18243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Climate change</topic><topic>Cobalt</topic><topic>Conversion</topic><topic>Copper</topic><topic>Dry methane reforming</topic><topic>Metals</topic><topic>Methane</topic><topic>Mitigation</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Reforming</topic><topic>Sodium</topic><topic>Syngas production</topic><topic>Synthesis gas</topic><topic>Titanate nanotubes</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Wesley F.</creatorcontrib><creatorcontrib>Vieira, Michele O.</creatorcontrib><creatorcontrib>Calgaro, Camila O.</creatorcontrib><creatorcontrib>Perez-Lopez, Oscar W.</creatorcontrib><creatorcontrib>Ligabue, Rosane A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Wesley F.</au><au>Vieira, Michele O.</au><au>Calgaro, Camila O.</au><au>Perez-Lopez, Oscar W.</au><au>Ligabue, Rosane A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>253</volume><spage>713</spage><epage>721</epage><pages>713-721</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •Metal-modified TNT were evaluated as catalysts on the dry reforming of methane.•NaTNT was used as support for Co, Cu, Zn and Ni metals.•Ni-NaTNT led to 45 and 79% CO2 and CH4 conversion, respectively.•Ni-NaTNT were more resistance to coke formation. The mitigation of carbon emissions is an imminent and extremely relevant issue. In addition to carbon dioxide (CO2), methane (CH4) also contributes significantly to climate change. Dry reforming of methane (DRM) is a promising alternative to mitigate this gas, generating syngas, an important precursor of several chemical routes. In this context, sodium and protonated titanate nanotubes (TNT) were modified with metals (Co, Cu, Zn and Ni) and evaluated as catalyst for DRM. Zn-NaTNT, Co-NaTNT and Cu-NaTNT showed low catalytic activity (CO2 and CH4 conversion &lt;5%). However, when Ni-NaTNT and Ni-HTNT were used as catalyst, CO2 and CH4 conversions were of 35 and 27% (Ni-NaTNT) and 70 and 74% (Ni-HTNT), respectively. Both catalysts showed good stability keeping CO2 and CH4 conversions at 700 °C during 5 h of reaction. Additionally, although conversion values reached with Ni-NaTNT were lower, the sodium presence in this catalyst inhibits to coke formation when compared to Ni-HTNT.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.05.019</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2019-10, Vol.253, p.713-721
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2262705221
source Access via ScienceDirect (Elsevier)
subjects Carbon dioxide
Catalysts
Catalytic activity
Catalytic converters
Climate change
Cobalt
Conversion
Copper
Dry methane reforming
Metals
Methane
Mitigation
Nanoparticles
Nanotechnology
Nanotubes
Nickel
Organic chemistry
Reforming
Sodium
Syngas production
Synthesis gas
Titanate nanotubes
Zinc
title Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dry%20reforming%20of%20methane%20using%20modified%20sodium%20and%20protonated%20titanate%20nanotube%20catalysts&rft.jtitle=Fuel%20(Guildford)&rft.au=Monteiro,%20Wesley%20F.&rft.date=2019-10-01&rft.volume=253&rft.spage=713&rft.epage=721&rft.pages=713-721&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.05.019&rft_dat=%3Cproquest_cross%3E2262705221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262705221&rft_id=info:pmid/&rft_els_id=S0016236119307641&rfr_iscdi=true