Body temperature estimation of a moving subject from thermographic images

The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to dise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2012-03, Vol.23 (2), p.299-311
Hauptverfasser: Bilodeau, Guillaume-Alexandre, Torabi, Atousa, Lévesque, Maxime, Ouellet, Charles, Langlois, J. M. Pierre, Lema, Pablo, Carmant, Lionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 2
container_start_page 299
container_title Machine vision and applications
container_volume 23
creator Bilodeau, Guillaume-Alexandre
Torabi, Atousa
Lévesque, Maxime
Ouellet, Charles
Langlois, J. M. Pierre
Lema, Pablo
Carmant, Lionel
description The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to diseases and medications. In this paper, we present a method to obtain the body temperature on a moving subject from thermographic images. The camera’s output (a measurement for each pixel) is processed with a particle filter tracker, a clustering algorithm, and a Kalman filter to reduce tracking and measurement noise. The method was tested on videos from animal experiments and on a human patient. Tracking performance was then evaluated by comparison with manually selected regions of interest in thermographic images. The method achieves RMS temperature estimation errors of
doi_str_mv 10.1007/s00138-010-0313-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262652897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262652897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e390878caf78f6981097afd68af13a010f2aa53722cbf818598db3289740f2e13</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-pMst0kRy1aCwUveg7pNtlucTdrkhX6701ZwZOnGZjvvXk8Qm4R7hFAPEQA5LIAhAI48kKdkRmWnBUoKnVOZqDyLkGxS3IV4wEASiHKGVk_-d2RJtsNNpg0BkttTG1nUut76h01tPPfbd_QOG4Ptk7UBd_RtLeh800ww76tacYbG6_JhTOf0d78zjn5eHl-X74Wm7fVevm4KWqOVSosVyCFrI0T0lVKIihh3K6SxiE3Ob9jxiy4YKzeOolyoeRuy5lUoswni3xO7ibfIfivMafVBz-GPr_UjFWsWpzYTOFE1cHHGKzTQ8g5w1Ej6FNjempM54_61JhWWcMmTcxs39jw5_y_6Adspm2Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262652897</pqid></control><display><type>article</type><title>Body temperature estimation of a moving subject from thermographic images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bilodeau, Guillaume-Alexandre ; Torabi, Atousa ; Lévesque, Maxime ; Ouellet, Charles ; Langlois, J. M. Pierre ; Lema, Pablo ; Carmant, Lionel</creator><creatorcontrib>Bilodeau, Guillaume-Alexandre ; Torabi, Atousa ; Lévesque, Maxime ; Ouellet, Charles ; Langlois, J. M. Pierre ; Lema, Pablo ; Carmant, Lionel</creatorcontrib><description>The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to diseases and medications. In this paper, we present a method to obtain the body temperature on a moving subject from thermographic images. The camera’s output (a measurement for each pixel) is processed with a particle filter tracker, a clustering algorithm, and a Kalman filter to reduce tracking and measurement noise. The method was tested on videos from animal experiments and on a human patient. Tracking performance was then evaluated by comparison with manually selected regions of interest in thermographic images. The method achieves RMS temperature estimation errors of &lt;0.1°C.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-010-0313-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Body temperature ; Clustering ; Communications Engineering ; Computer Science ; Human performance ; Image Processing and Computer Vision ; Kalman filters ; Networks ; Noise measurement ; Noise reduction ; Original Paper ; Pattern Recognition ; Thermography ; Tracking ; Vision systems</subject><ispartof>Machine vision and applications, 2012-03, Vol.23 (2), p.299-311</ispartof><rights>Springer-Verlag 2011</rights><rights>Machine Vision and Applications is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e390878caf78f6981097afd68af13a010f2aa53722cbf818598db3289740f2e13</citedby><cites>FETCH-LOGICAL-c316t-e390878caf78f6981097afd68af13a010f2aa53722cbf818598db3289740f2e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-010-0313-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-010-0313-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Bilodeau, Guillaume-Alexandre</creatorcontrib><creatorcontrib>Torabi, Atousa</creatorcontrib><creatorcontrib>Lévesque, Maxime</creatorcontrib><creatorcontrib>Ouellet, Charles</creatorcontrib><creatorcontrib>Langlois, J. M. Pierre</creatorcontrib><creatorcontrib>Lema, Pablo</creatorcontrib><creatorcontrib>Carmant, Lionel</creatorcontrib><title>Body temperature estimation of a moving subject from thermographic images</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to diseases and medications. In this paper, we present a method to obtain the body temperature on a moving subject from thermographic images. The camera’s output (a measurement for each pixel) is processed with a particle filter tracker, a clustering algorithm, and a Kalman filter to reduce tracking and measurement noise. The method was tested on videos from animal experiments and on a human patient. Tracking performance was then evaluated by comparison with manually selected regions of interest in thermographic images. The method achieves RMS temperature estimation errors of &lt;0.1°C.</description><subject>Algorithms</subject><subject>Body temperature</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Human performance</subject><subject>Image Processing and Computer Vision</subject><subject>Kalman filters</subject><subject>Networks</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Thermography</subject><subject>Tracking</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-pMst0kRy1aCwUveg7pNtlucTdrkhX6701ZwZOnGZjvvXk8Qm4R7hFAPEQA5LIAhAI48kKdkRmWnBUoKnVOZqDyLkGxS3IV4wEASiHKGVk_-d2RJtsNNpg0BkttTG1nUut76h01tPPfbd_QOG4Ptk7UBd_RtLeh800ww76tacYbG6_JhTOf0d78zjn5eHl-X74Wm7fVevm4KWqOVSosVyCFrI0T0lVKIihh3K6SxiE3Ob9jxiy4YKzeOolyoeRuy5lUoswni3xO7ibfIfivMafVBz-GPr_UjFWsWpzYTOFE1cHHGKzTQ8g5w1Ej6FNjempM54_61JhWWcMmTcxs39jw5_y_6Adspm2Z</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Bilodeau, Guillaume-Alexandre</creator><creator>Torabi, Atousa</creator><creator>Lévesque, Maxime</creator><creator>Ouellet, Charles</creator><creator>Langlois, J. M. Pierre</creator><creator>Lema, Pablo</creator><creator>Carmant, Lionel</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120301</creationdate><title>Body temperature estimation of a moving subject from thermographic images</title><author>Bilodeau, Guillaume-Alexandre ; Torabi, Atousa ; Lévesque, Maxime ; Ouellet, Charles ; Langlois, J. M. Pierre ; Lema, Pablo ; Carmant, Lionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e390878caf78f6981097afd68af13a010f2aa53722cbf818598db3289740f2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Body temperature</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Human performance</topic><topic>Image Processing and Computer Vision</topic><topic>Kalman filters</topic><topic>Networks</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Thermography</topic><topic>Tracking</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilodeau, Guillaume-Alexandre</creatorcontrib><creatorcontrib>Torabi, Atousa</creatorcontrib><creatorcontrib>Lévesque, Maxime</creatorcontrib><creatorcontrib>Ouellet, Charles</creatorcontrib><creatorcontrib>Langlois, J. M. Pierre</creatorcontrib><creatorcontrib>Lema, Pablo</creatorcontrib><creatorcontrib>Carmant, Lionel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilodeau, Guillaume-Alexandre</au><au>Torabi, Atousa</au><au>Lévesque, Maxime</au><au>Ouellet, Charles</au><au>Langlois, J. M. Pierre</au><au>Lema, Pablo</au><au>Carmant, Lionel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Body temperature estimation of a moving subject from thermographic images</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>23</volume><issue>2</issue><spage>299</spage><epage>311</epage><pages>299-311</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to diseases and medications. In this paper, we present a method to obtain the body temperature on a moving subject from thermographic images. The camera’s output (a measurement for each pixel) is processed with a particle filter tracker, a clustering algorithm, and a Kalman filter to reduce tracking and measurement noise. The method was tested on videos from animal experiments and on a human patient. Tracking performance was then evaluated by comparison with manually selected regions of interest in thermographic images. The method achieves RMS temperature estimation errors of &lt;0.1°C.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00138-010-0313-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2012-03, Vol.23 (2), p.299-311
issn 0932-8092
1432-1769
language eng
recordid cdi_proquest_journals_2262652897
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Body temperature
Clustering
Communications Engineering
Computer Science
Human performance
Image Processing and Computer Vision
Kalman filters
Networks
Noise measurement
Noise reduction
Original Paper
Pattern Recognition
Thermography
Tracking
Vision systems
title Body temperature estimation of a moving subject from thermographic images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Body%20temperature%20estimation%20of%20a%20moving%20subject%20from%20thermographic%20images&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Bilodeau,%20Guillaume-Alexandre&rft.date=2012-03-01&rft.volume=23&rft.issue=2&rft.spage=299&rft.epage=311&rft.pages=299-311&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-010-0313-9&rft_dat=%3Cproquest_cross%3E2262652897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262652897&rft_id=info:pmid/&rfr_iscdi=true