Body temperature estimation of a moving subject from thermographic images
The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to dise...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2012-03, Vol.23 (2), p.299-311 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 2 |
container_start_page | 299 |
container_title | Machine vision and applications |
container_volume | 23 |
creator | Bilodeau, Guillaume-Alexandre Torabi, Atousa Lévesque, Maxime Ouellet, Charles Langlois, J. M. Pierre Lema, Pablo Carmant, Lionel |
description | The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to diseases and medications. In this paper, we present a method to obtain the body temperature on a moving subject from thermographic images. The camera’s output (a measurement for each pixel) is processed with a particle filter tracker, a clustering algorithm, and a Kalman filter to reduce tracking and measurement noise. The method was tested on videos from animal experiments and on a human patient. Tracking performance was then evaluated by comparison with manually selected regions of interest in thermographic images. The method achieves RMS temperature estimation errors of |
doi_str_mv | 10.1007/s00138-010-0313-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262652897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262652897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e390878caf78f6981097afd68af13a010f2aa53722cbf818598db3289740f2e13</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-pMst0kRy1aCwUveg7pNtlucTdrkhX6701ZwZOnGZjvvXk8Qm4R7hFAPEQA5LIAhAI48kKdkRmWnBUoKnVOZqDyLkGxS3IV4wEASiHKGVk_-d2RJtsNNpg0BkttTG1nUut76h01tPPfbd_QOG4Ptk7UBd_RtLeh800ww76tacYbG6_JhTOf0d78zjn5eHl-X74Wm7fVevm4KWqOVSosVyCFrI0T0lVKIihh3K6SxiE3Ob9jxiy4YKzeOolyoeRuy5lUoswni3xO7ibfIfivMafVBz-GPr_UjFWsWpzYTOFE1cHHGKzTQ8g5w1Ej6FNjempM54_61JhWWcMmTcxs39jw5_y_6Adspm2Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262652897</pqid></control><display><type>article</type><title>Body temperature estimation of a moving subject from thermographic images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bilodeau, Guillaume-Alexandre ; Torabi, Atousa ; Lévesque, Maxime ; Ouellet, Charles ; Langlois, J. M. Pierre ; Lema, Pablo ; Carmant, Lionel</creator><creatorcontrib>Bilodeau, Guillaume-Alexandre ; Torabi, Atousa ; Lévesque, Maxime ; Ouellet, Charles ; Langlois, J. M. Pierre ; Lema, Pablo ; Carmant, Lionel</creatorcontrib><description>The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to diseases and medications. In this paper, we present a method to obtain the body temperature on a moving subject from thermographic images. The camera’s output (a measurement for each pixel) is processed with a particle filter tracker, a clustering algorithm, and a Kalman filter to reduce tracking and measurement noise. The method was tested on videos from animal experiments and on a human patient. Tracking performance was then evaluated by comparison with manually selected regions of interest in thermographic images. The method achieves RMS temperature estimation errors of <0.1°C.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-010-0313-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Body temperature ; Clustering ; Communications Engineering ; Computer Science ; Human performance ; Image Processing and Computer Vision ; Kalman filters ; Networks ; Noise measurement ; Noise reduction ; Original Paper ; Pattern Recognition ; Thermography ; Tracking ; Vision systems</subject><ispartof>Machine vision and applications, 2012-03, Vol.23 (2), p.299-311</ispartof><rights>Springer-Verlag 2011</rights><rights>Machine Vision and Applications is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e390878caf78f6981097afd68af13a010f2aa53722cbf818598db3289740f2e13</citedby><cites>FETCH-LOGICAL-c316t-e390878caf78f6981097afd68af13a010f2aa53722cbf818598db3289740f2e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-010-0313-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-010-0313-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Bilodeau, Guillaume-Alexandre</creatorcontrib><creatorcontrib>Torabi, Atousa</creatorcontrib><creatorcontrib>Lévesque, Maxime</creatorcontrib><creatorcontrib>Ouellet, Charles</creatorcontrib><creatorcontrib>Langlois, J. M. Pierre</creatorcontrib><creatorcontrib>Lema, Pablo</creatorcontrib><creatorcontrib>Carmant, Lionel</creatorcontrib><title>Body temperature estimation of a moving subject from thermographic images</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to diseases and medications. In this paper, we present a method to obtain the body temperature on a moving subject from thermographic images. The camera’s output (a measurement for each pixel) is processed with a particle filter tracker, a clustering algorithm, and a Kalman filter to reduce tracking and measurement noise. The method was tested on videos from animal experiments and on a human patient. Tracking performance was then evaluated by comparison with manually selected regions of interest in thermographic images. The method achieves RMS temperature estimation errors of <0.1°C.</description><subject>Algorithms</subject><subject>Body temperature</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Human performance</subject><subject>Image Processing and Computer Vision</subject><subject>Kalman filters</subject><subject>Networks</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Thermography</subject><subject>Tracking</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-pMst0kRy1aCwUveg7pNtlucTdrkhX6701ZwZOnGZjvvXk8Qm4R7hFAPEQA5LIAhAI48kKdkRmWnBUoKnVOZqDyLkGxS3IV4wEASiHKGVk_-d2RJtsNNpg0BkttTG1nUut76h01tPPfbd_QOG4Ptk7UBd_RtLeh800ww76tacYbG6_JhTOf0d78zjn5eHl-X74Wm7fVevm4KWqOVSosVyCFrI0T0lVKIihh3K6SxiE3Ob9jxiy4YKzeOolyoeRuy5lUoswni3xO7ibfIfivMafVBz-GPr_UjFWsWpzYTOFE1cHHGKzTQ8g5w1Ej6FNjempM54_61JhWWcMmTcxs39jw5_y_6Adspm2Z</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Bilodeau, Guillaume-Alexandre</creator><creator>Torabi, Atousa</creator><creator>Lévesque, Maxime</creator><creator>Ouellet, Charles</creator><creator>Langlois, J. M. Pierre</creator><creator>Lema, Pablo</creator><creator>Carmant, Lionel</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120301</creationdate><title>Body temperature estimation of a moving subject from thermographic images</title><author>Bilodeau, Guillaume-Alexandre ; Torabi, Atousa ; Lévesque, Maxime ; Ouellet, Charles ; Langlois, J. M. Pierre ; Lema, Pablo ; Carmant, Lionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e390878caf78f6981097afd68af13a010f2aa53722cbf818598db3289740f2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Body temperature</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Human performance</topic><topic>Image Processing and Computer Vision</topic><topic>Kalman filters</topic><topic>Networks</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Thermography</topic><topic>Tracking</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilodeau, Guillaume-Alexandre</creatorcontrib><creatorcontrib>Torabi, Atousa</creatorcontrib><creatorcontrib>Lévesque, Maxime</creatorcontrib><creatorcontrib>Ouellet, Charles</creatorcontrib><creatorcontrib>Langlois, J. M. Pierre</creatorcontrib><creatorcontrib>Lema, Pablo</creatorcontrib><creatorcontrib>Carmant, Lionel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilodeau, Guillaume-Alexandre</au><au>Torabi, Atousa</au><au>Lévesque, Maxime</au><au>Ouellet, Charles</au><au>Langlois, J. M. Pierre</au><au>Lema, Pablo</au><au>Carmant, Lionel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Body temperature estimation of a moving subject from thermographic images</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>23</volume><issue>2</issue><spage>299</spage><epage>311</epage><pages>299-311</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>The continual measurement of the body temperature of a moving subject in a non-invasive way is a challenging task. However, doing so enables the observation of important phenomena with not much inconvenience to the subject, and can be a powerful tool for understanding physiological reactions to diseases and medications. In this paper, we present a method to obtain the body temperature on a moving subject from thermographic images. The camera’s output (a measurement for each pixel) is processed with a particle filter tracker, a clustering algorithm, and a Kalman filter to reduce tracking and measurement noise. The method was tested on videos from animal experiments and on a human patient. Tracking performance was then evaluated by comparison with manually selected regions of interest in thermographic images. The method achieves RMS temperature estimation errors of <0.1°C.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00138-010-0313-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2012-03, Vol.23 (2), p.299-311 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_journals_2262652897 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Body temperature Clustering Communications Engineering Computer Science Human performance Image Processing and Computer Vision Kalman filters Networks Noise measurement Noise reduction Original Paper Pattern Recognition Thermography Tracking Vision systems |
title | Body temperature estimation of a moving subject from thermographic images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Body%20temperature%20estimation%20of%20a%20moving%20subject%20from%20thermographic%20images&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Bilodeau,%20Guillaume-Alexandre&rft.date=2012-03-01&rft.volume=23&rft.issue=2&rft.spage=299&rft.epage=311&rft.pages=299-311&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-010-0313-9&rft_dat=%3Cproquest_cross%3E2262652897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262652897&rft_id=info:pmid/&rfr_iscdi=true |