A vision-based system to support tactical and physical analyses in futsal
This paper presents a vision-based system to support tactical and physical analyses of futsal teams. Most part of the current analyses in this sport are manually performed, while the existing solutions based on automatic approaches are frequently composed of costly and complex tools, developed for o...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2017-08, Vol.28 (5-6), p.475-496 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 496 |
---|---|
container_issue | 5-6 |
container_start_page | 475 |
container_title | Machine vision and applications |
container_volume | 28 |
creator | de Pádua, Pedro H. C. Pádua, Flávio L. C. de A. Pereira, Marconi Sousa, Marco T. D. de Oliveira, Matheus B. Wanner, Elizabeth F. |
description | This paper presents a vision-based system to support tactical and physical analyses of futsal teams. Most part of the current analyses in this sport are manually performed, while the existing solutions based on automatic approaches are frequently composed of costly and complex tools, developed for other kind of team sports, making it difficult their adoption by futsal teams. Our system, on the other hand, represents a simple yet efficient dedicated solution, which is based on the analyses of image sequences captured by a single stationary camera used to obtain top-view images of the entire court. We use adaptive background subtraction and blob analysis to detect players, as well as particle filters to track them in every video frame. The system determines the distance traveled by each player, his/her mean and maximum speeds, as well as generates heat maps that describe players’ occupancy during the match. To present the collected data, our system uses a specially developed mobile application. Experimental results with image sequences of an official match and a training match show that our system provides data with global mean tracking errors below 40 cm, demanding on 25 ms to process each frame and, thus, demonstrating its high application potential. |
doi_str_mv | 10.1007/s00138-017-0849-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262632530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924930922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6c932b640223c16dbf5087b4c542f158efd4deae7a67d4b061ffb2d6454c89763</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Bz9VJmibtcVn8WFjwoueQpol26bY10wrdX2-W7sGLnmYGnvdleAi5ZXDPANQDArA0T4CpBHJRJIczsmAi5QlTsjgnCyjinkPBL8kV4g4AhFJiQTYr-l1j3bVJadBVFCcc3J4OHcWx77sw0MHYobamoaataP854ekwzYQOad1SPw5ommty4U2D7uY0l-T96fFt_ZJsX58369U2sWmuhkTa-EkpBXCeWiar0meQq1LYTHDPstz5SlTOOGWkqkQJknlf8kqKTNi8UDJdkru5tw_d1-hw0LtuDPEd1JxLLlOepfAfxQouijSq4JFiM2VDhxic132o9yZMmoE-etWzVx296qNXfYgZPmcwsu2HC7-a_wz9AEfHemM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262632530</pqid></control><display><type>article</type><title>A vision-based system to support tactical and physical analyses in futsal</title><source>2022 ECC(Springer)</source><creator>de Pádua, Pedro H. C. ; Pádua, Flávio L. C. ; de A. Pereira, Marconi ; Sousa, Marco T. D. ; de Oliveira, Matheus B. ; Wanner, Elizabeth F.</creator><creatorcontrib>de Pádua, Pedro H. C. ; Pádua, Flávio L. C. ; de A. Pereira, Marconi ; Sousa, Marco T. D. ; de Oliveira, Matheus B. ; Wanner, Elizabeth F.</creatorcontrib><description>This paper presents a vision-based system to support tactical and physical analyses of futsal teams. Most part of the current analyses in this sport are manually performed, while the existing solutions based on automatic approaches are frequently composed of costly and complex tools, developed for other kind of team sports, making it difficult their adoption by futsal teams. Our system, on the other hand, represents a simple yet efficient dedicated solution, which is based on the analyses of image sequences captured by a single stationary camera used to obtain top-view images of the entire court. We use adaptive background subtraction and blob analysis to detect players, as well as particle filters to track them in every video frame. The system determines the distance traveled by each player, his/her mean and maximum speeds, as well as generates heat maps that describe players’ occupancy during the match. To present the collected data, our system uses a specially developed mobile application. Experimental results with image sequences of an official match and a training match show that our system provides data with global mean tracking errors below 40 cm, demanding on 25 ms to process each frame and, thus, demonstrating its high application potential.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-017-0849-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications programs ; Communications Engineering ; Computer Science ; Computer vision ; Graphical representations ; Image analysis ; Image Processing and Computer Vision ; Mobile computing ; Networks ; Occupancy ; Original Paper ; Pattern Recognition ; Players ; Sequences ; Subtraction ; Tracking errors ; Vision systems</subject><ispartof>Machine vision and applications, 2017-08, Vol.28 (5-6), p.475-496</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Machine Vision and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6c932b640223c16dbf5087b4c542f158efd4deae7a67d4b061ffb2d6454c89763</citedby><cites>FETCH-LOGICAL-c387t-6c932b640223c16dbf5087b4c542f158efd4deae7a67d4b061ffb2d6454c89763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-017-0849-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-017-0849-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Pádua, Pedro H. C.</creatorcontrib><creatorcontrib>Pádua, Flávio L. C.</creatorcontrib><creatorcontrib>de A. Pereira, Marconi</creatorcontrib><creatorcontrib>Sousa, Marco T. D.</creatorcontrib><creatorcontrib>de Oliveira, Matheus B.</creatorcontrib><creatorcontrib>Wanner, Elizabeth F.</creatorcontrib><title>A vision-based system to support tactical and physical analyses in futsal</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>This paper presents a vision-based system to support tactical and physical analyses of futsal teams. Most part of the current analyses in this sport are manually performed, while the existing solutions based on automatic approaches are frequently composed of costly and complex tools, developed for other kind of team sports, making it difficult their adoption by futsal teams. Our system, on the other hand, represents a simple yet efficient dedicated solution, which is based on the analyses of image sequences captured by a single stationary camera used to obtain top-view images of the entire court. We use adaptive background subtraction and blob analysis to detect players, as well as particle filters to track them in every video frame. The system determines the distance traveled by each player, his/her mean and maximum speeds, as well as generates heat maps that describe players’ occupancy during the match. To present the collected data, our system uses a specially developed mobile application. Experimental results with image sequences of an official match and a training match show that our system provides data with global mean tracking errors below 40 cm, demanding on 25 ms to process each frame and, thus, demonstrating its high application potential.</description><subject>Applications programs</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Graphical representations</subject><subject>Image analysis</subject><subject>Image Processing and Computer Vision</subject><subject>Mobile computing</subject><subject>Networks</subject><subject>Occupancy</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Players</subject><subject>Sequences</subject><subject>Subtraction</subject><subject>Tracking errors</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AG8Bz9VJmibtcVn8WFjwoueQpol26bY10wrdX2-W7sGLnmYGnvdleAi5ZXDPANQDArA0T4CpBHJRJIczsmAi5QlTsjgnCyjinkPBL8kV4g4AhFJiQTYr-l1j3bVJadBVFCcc3J4OHcWx77sw0MHYobamoaataP854ekwzYQOad1SPw5ommty4U2D7uY0l-T96fFt_ZJsX58369U2sWmuhkTa-EkpBXCeWiar0meQq1LYTHDPstz5SlTOOGWkqkQJknlf8kqKTNi8UDJdkru5tw_d1-hw0LtuDPEd1JxLLlOepfAfxQouijSq4JFiM2VDhxic132o9yZMmoE-etWzVx296qNXfYgZPmcwsu2HC7-a_wz9AEfHemM</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>de Pádua, Pedro H. C.</creator><creator>Pádua, Flávio L. C.</creator><creator>de A. Pereira, Marconi</creator><creator>Sousa, Marco T. D.</creator><creator>de Oliveira, Matheus B.</creator><creator>Wanner, Elizabeth F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170801</creationdate><title>A vision-based system to support tactical and physical analyses in futsal</title><author>de Pádua, Pedro H. C. ; Pádua, Flávio L. C. ; de A. Pereira, Marconi ; Sousa, Marco T. D. ; de Oliveira, Matheus B. ; Wanner, Elizabeth F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6c932b640223c16dbf5087b4c542f158efd4deae7a67d4b061ffb2d6454c89763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications programs</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Graphical representations</topic><topic>Image analysis</topic><topic>Image Processing and Computer Vision</topic><topic>Mobile computing</topic><topic>Networks</topic><topic>Occupancy</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Players</topic><topic>Sequences</topic><topic>Subtraction</topic><topic>Tracking errors</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pádua, Pedro H. C.</creatorcontrib><creatorcontrib>Pádua, Flávio L. C.</creatorcontrib><creatorcontrib>de A. Pereira, Marconi</creatorcontrib><creatorcontrib>Sousa, Marco T. D.</creatorcontrib><creatorcontrib>de Oliveira, Matheus B.</creatorcontrib><creatorcontrib>Wanner, Elizabeth F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pádua, Pedro H. C.</au><au>Pádua, Flávio L. C.</au><au>de A. Pereira, Marconi</au><au>Sousa, Marco T. D.</au><au>de Oliveira, Matheus B.</au><au>Wanner, Elizabeth F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A vision-based system to support tactical and physical analyses in futsal</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>28</volume><issue>5-6</issue><spage>475</spage><epage>496</epage><pages>475-496</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>This paper presents a vision-based system to support tactical and physical analyses of futsal teams. Most part of the current analyses in this sport are manually performed, while the existing solutions based on automatic approaches are frequently composed of costly and complex tools, developed for other kind of team sports, making it difficult their adoption by futsal teams. Our system, on the other hand, represents a simple yet efficient dedicated solution, which is based on the analyses of image sequences captured by a single stationary camera used to obtain top-view images of the entire court. We use adaptive background subtraction and blob analysis to detect players, as well as particle filters to track them in every video frame. The system determines the distance traveled by each player, his/her mean and maximum speeds, as well as generates heat maps that describe players’ occupancy during the match. To present the collected data, our system uses a specially developed mobile application. Experimental results with image sequences of an official match and a training match show that our system provides data with global mean tracking errors below 40 cm, demanding on 25 ms to process each frame and, thus, demonstrating its high application potential.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-017-0849-z</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2017-08, Vol.28 (5-6), p.475-496 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_journals_2262632530 |
source | 2022 ECC(Springer) |
subjects | Applications programs Communications Engineering Computer Science Computer vision Graphical representations Image analysis Image Processing and Computer Vision Mobile computing Networks Occupancy Original Paper Pattern Recognition Players Sequences Subtraction Tracking errors Vision systems |
title | A vision-based system to support tactical and physical analyses in futsal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20vision-based%20system%20to%20support%20tactical%20and%20physical%20analyses%20in%20futsal&rft.jtitle=Machine%20vision%20and%20applications&rft.au=de%20P%C3%A1dua,%20Pedro%20H.%20C.&rft.date=2017-08-01&rft.volume=28&rft.issue=5-6&rft.spage=475&rft.epage=496&rft.pages=475-496&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-017-0849-z&rft_dat=%3Cproquest_cross%3E1924930922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262632530&rft_id=info:pmid/&rfr_iscdi=true |