Quantization-based Markov feature extraction method for image splicing detection
In this paper, we propose an efficient Markov feature extraction method for image splicing detection using discrete cosine transform coefficient quantization. The quantization operation reduces the information loss caused by the coefficient thresholding used to restrict the number of Markov features...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2018-04, Vol.29 (3), p.543-552 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 552 |
---|---|
container_issue | 3 |
container_start_page | 543 |
container_title | Machine vision and applications |
container_volume | 29 |
creator | Han, Jong Goo Park, Tae Hee Moon, Yong Ho Eom, Il Kyu |
description | In this paper, we propose an efficient Markov feature extraction method for image splicing detection using discrete cosine transform coefficient quantization. The quantization operation reduces the information loss caused by the coefficient thresholding used to restrict the number of Markov features. The splicing detection performance is improved because the quantization method enlarges the discrimination of the probability distributions between the authentic and the spliced images. In this paper, we present two Markov feature selection algorithms. After quantization operation, we choose the sum of three directional Markov transition probability values at the corresponding position in the probability matrix as a first feature vector. For the second feature vector, the maximum value among the three directional difference values of the three color channels is used. A fixed number of features, regardless of the color channels and test datasets, are used in the proposed algorithm. Through experimental simulations, we demonstrate that the proposed method achieves high performance in splicing detection. The average detection accuracy is over than 97% on three well-known splicing detection image datasets without the use of additional feature reduction algorithms. Furthermore, we achieve reasonable forgery detection performance for more modern and realistic dataset. |
doi_str_mv | 10.1007/s00138-018-0911-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262631367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014036093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-49baa7ecf35281f51242dbd6cfa8caf9859cacd2222d1bb353b19a2be60c140e3</originalsourceid><addsrcrecordid>eNp9kF1LBCEUhiUK2rZ-QHdC11MedT68jKUv2KigrsVxjttsuzObOlH9-twm6KoEUfB534MPIcfAToGx8iwwBqLKGKStALJ8h0xACp5BWahdMmEq3Sum-D45CGHJGJNlKSfk_mEwXWw_TWz7LqtNwIbeGv_Sv1GHJg4eKb5Hb-z2na4xPvcNdb2n7doskIbNqrVtt6ANRvxmDsmeM6uARz_nlDxdXjzOrrP53dXN7HyeWSFlzKSqjSnROpHzClwOXPKmbgrrTGWNU1WurLENT6uBuha5qEEZXmPBLEiGYkpOxt6N718HDFEv-8F3aaTmvOCFAFGU_1Is9YgiiUkUjJT1fQgend749D__oYHprV496tVJr97q1XnK8DETEtst0P82_x36AkOHfW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262631367</pqid></control><display><type>article</type><title>Quantization-based Markov feature extraction method for image splicing detection</title><source>SpringerNature Journals</source><creator>Han, Jong Goo ; Park, Tae Hee ; Moon, Yong Ho ; Eom, Il Kyu</creator><creatorcontrib>Han, Jong Goo ; Park, Tae Hee ; Moon, Yong Ho ; Eom, Il Kyu</creatorcontrib><description>In this paper, we propose an efficient Markov feature extraction method for image splicing detection using discrete cosine transform coefficient quantization. The quantization operation reduces the information loss caused by the coefficient thresholding used to restrict the number of Markov features. The splicing detection performance is improved because the quantization method enlarges the discrimination of the probability distributions between the authentic and the spliced images. In this paper, we present two Markov feature selection algorithms. After quantization operation, we choose the sum of three directional Markov transition probability values at the corresponding position in the probability matrix as a first feature vector. For the second feature vector, the maximum value among the three directional difference values of the three color channels is used. A fixed number of features, regardless of the color channels and test datasets, are used in the proposed algorithm. Through experimental simulations, we demonstrate that the proposed method achieves high performance in splicing detection. The average detection accuracy is over than 97% on three well-known splicing detection image datasets without the use of additional feature reduction algorithms. Furthermore, we achieve reasonable forgery detection performance for more modern and realistic dataset.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-018-0911-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Channels ; Color ; Communications Engineering ; Computer Science ; Computer simulation ; Datasets ; Discrete cosine transform ; Feature extraction ; Image detection ; Image Processing and Computer Vision ; Markov processes ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Measurement ; Networks ; Original Paper ; Pattern Recognition ; Splicing ; Transition probabilities ; Vision systems</subject><ispartof>Machine vision and applications, 2018-04, Vol.29 (3), p.543-552</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Machine Vision and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-49baa7ecf35281f51242dbd6cfa8caf9859cacd2222d1bb353b19a2be60c140e3</citedby><cites>FETCH-LOGICAL-c344t-49baa7ecf35281f51242dbd6cfa8caf9859cacd2222d1bb353b19a2be60c140e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-018-0911-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-018-0911-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Han, Jong Goo</creatorcontrib><creatorcontrib>Park, Tae Hee</creatorcontrib><creatorcontrib>Moon, Yong Ho</creatorcontrib><creatorcontrib>Eom, Il Kyu</creatorcontrib><title>Quantization-based Markov feature extraction method for image splicing detection</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>In this paper, we propose an efficient Markov feature extraction method for image splicing detection using discrete cosine transform coefficient quantization. The quantization operation reduces the information loss caused by the coefficient thresholding used to restrict the number of Markov features. The splicing detection performance is improved because the quantization method enlarges the discrimination of the probability distributions between the authentic and the spliced images. In this paper, we present two Markov feature selection algorithms. After quantization operation, we choose the sum of three directional Markov transition probability values at the corresponding position in the probability matrix as a first feature vector. For the second feature vector, the maximum value among the three directional difference values of the three color channels is used. A fixed number of features, regardless of the color channels and test datasets, are used in the proposed algorithm. Through experimental simulations, we demonstrate that the proposed method achieves high performance in splicing detection. The average detection accuracy is over than 97% on three well-known splicing detection image datasets without the use of additional feature reduction algorithms. Furthermore, we achieve reasonable forgery detection performance for more modern and realistic dataset.</description><subject>Algorithms</subject><subject>Channels</subject><subject>Color</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Discrete cosine transform</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Image Processing and Computer Vision</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Measurement</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Splicing</subject><subject>Transition probabilities</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kF1LBCEUhiUK2rZ-QHdC11MedT68jKUv2KigrsVxjttsuzObOlH9-twm6KoEUfB534MPIcfAToGx8iwwBqLKGKStALJ8h0xACp5BWahdMmEq3Sum-D45CGHJGJNlKSfk_mEwXWw_TWz7LqtNwIbeGv_Sv1GHJg4eKb5Hb-z2na4xPvcNdb2n7doskIbNqrVtt6ANRvxmDsmeM6uARz_nlDxdXjzOrrP53dXN7HyeWSFlzKSqjSnROpHzClwOXPKmbgrrTGWNU1WurLENT6uBuha5qEEZXmPBLEiGYkpOxt6N718HDFEv-8F3aaTmvOCFAFGU_1Is9YgiiUkUjJT1fQgend749D__oYHprV496tVJr97q1XnK8DETEtst0P82_x36AkOHfW0</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Han, Jong Goo</creator><creator>Park, Tae Hee</creator><creator>Moon, Yong Ho</creator><creator>Eom, Il Kyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180401</creationdate><title>Quantization-based Markov feature extraction method for image splicing detection</title><author>Han, Jong Goo ; Park, Tae Hee ; Moon, Yong Ho ; Eom, Il Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-49baa7ecf35281f51242dbd6cfa8caf9859cacd2222d1bb353b19a2be60c140e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Channels</topic><topic>Color</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Discrete cosine transform</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Image Processing and Computer Vision</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Measurement</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Splicing</topic><topic>Transition probabilities</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jong Goo</creatorcontrib><creatorcontrib>Park, Tae Hee</creatorcontrib><creatorcontrib>Moon, Yong Ho</creatorcontrib><creatorcontrib>Eom, Il Kyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jong Goo</au><au>Park, Tae Hee</au><au>Moon, Yong Ho</au><au>Eom, Il Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantization-based Markov feature extraction method for image splicing detection</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>543</spage><epage>552</epage><pages>543-552</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>In this paper, we propose an efficient Markov feature extraction method for image splicing detection using discrete cosine transform coefficient quantization. The quantization operation reduces the information loss caused by the coefficient thresholding used to restrict the number of Markov features. The splicing detection performance is improved because the quantization method enlarges the discrimination of the probability distributions between the authentic and the spliced images. In this paper, we present two Markov feature selection algorithms. After quantization operation, we choose the sum of three directional Markov transition probability values at the corresponding position in the probability matrix as a first feature vector. For the second feature vector, the maximum value among the three directional difference values of the three color channels is used. A fixed number of features, regardless of the color channels and test datasets, are used in the proposed algorithm. Through experimental simulations, we demonstrate that the proposed method achieves high performance in splicing detection. The average detection accuracy is over than 97% on three well-known splicing detection image datasets without the use of additional feature reduction algorithms. Furthermore, we achieve reasonable forgery detection performance for more modern and realistic dataset.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-018-0911-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2018-04, Vol.29 (3), p.543-552 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_journals_2262631367 |
source | SpringerNature Journals |
subjects | Algorithms Channels Color Communications Engineering Computer Science Computer simulation Datasets Discrete cosine transform Feature extraction Image detection Image Processing and Computer Vision Markov processes Mathematical analysis Matrix algebra Matrix methods Measurement Networks Original Paper Pattern Recognition Splicing Transition probabilities Vision systems |
title | Quantization-based Markov feature extraction method for image splicing detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantization-based%20Markov%20feature%20extraction%20method%20for%20image%20splicing%20detection&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Han,%20Jong%20Goo&rft.date=2018-04-01&rft.volume=29&rft.issue=3&rft.spage=543&rft.epage=552&rft.pages=543-552&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-018-0911-5&rft_dat=%3Cproquest_cross%3E2014036093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262631367&rft_id=info:pmid/&rfr_iscdi=true |