A computational paradigm for multiresolution topology optimization (MTOP)

This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2010-04, Vol.41 (4), p.525-539
Hauptverfasser: Nguyen, Tam H., Paulino, Glaucio H., Song, Junho, Le, Chau H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 4
container_start_page 525
container_title Structural and multidisciplinary optimization
container_volume 41
creator Nguyen, Tam H.
Paulino, Glaucio H.
Song, Junho
Le, Chau H.
description This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.
doi_str_mv 10.1007/s00158-009-0443-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262604154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262604154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a35f47d72322baee50960d062f493dc782e8b9348247dec6af21bfc843ec00ac3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxAewssYGFYfxI4iyrikelorIoEjvLdewqVVIH21mUryclCFasZqQ592p0ELqicEcBivsIQDNJAEoCQnAij9CE5jQjVEh5_LsX76foLMYtAEgQ5QTNp9j4tuuTTrXf6QZ3Ouiq3rTY-YDbvkl1sNE3_eGMk-984zd77LtUt_XndwjfvKyWr7cX6MTpJtrLn3mO3h4fVrNnslg-zWfTBTFcskQ0z5woqoJxxtba2gzKHCrImRMlr0whmZXrkgvJBsqaXDtG185Iwa0B0Iafo-uxtwv-o7cxqa3vw_B6VIzlLAdBMzFQdKRM8DEG61QX6laHvaKgDsbUaEwNxtTBmJJDho2ZOLC7jQ1_zf-HvgAS3W5z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262604154</pqid></control><display><type>article</type><title>A computational paradigm for multiresolution topology optimization (MTOP)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nguyen, Tam H. ; Paulino, Glaucio H. ; Song, Junho ; Le, Chau H.</creator><creatorcontrib>Nguyen, Tam H. ; Paulino, Glaucio H. ; Song, Junho ; Le, Chau H.</creatorcontrib><description>This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-009-0443-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Computational Mathematics and Numerical Analysis ; Density ; Design optimization ; Discretization ; Engineering ; Engineering Design ; Finite element method ; Research Paper ; Stiffness matrix ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2010-04, Vol.41 (4), p.525-539</ispartof><rights>Springer-Verlag 2009</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a35f47d72322baee50960d062f493dc782e8b9348247dec6af21bfc843ec00ac3</citedby><cites>FETCH-LOGICAL-c382t-a35f47d72322baee50960d062f493dc782e8b9348247dec6af21bfc843ec00ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-009-0443-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-009-0443-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nguyen, Tam H.</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><creatorcontrib>Song, Junho</creatorcontrib><creatorcontrib>Le, Chau H.</creatorcontrib><title>A computational paradigm for multiresolution topology optimization (MTOP)</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Density</subject><subject>Design optimization</subject><subject>Discretization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Research Paper</subject><subject>Stiffness matrix</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtOwzAQRS0EEuXxAewssYGFYfxI4iyrikelorIoEjvLdewqVVIH21mUryclCFasZqQ592p0ELqicEcBivsIQDNJAEoCQnAij9CE5jQjVEh5_LsX76foLMYtAEgQ5QTNp9j4tuuTTrXf6QZ3Ouiq3rTY-YDbvkl1sNE3_eGMk-984zd77LtUt_XndwjfvKyWr7cX6MTpJtrLn3mO3h4fVrNnslg-zWfTBTFcskQ0z5woqoJxxtba2gzKHCrImRMlr0whmZXrkgvJBsqaXDtG185Iwa0B0Iafo-uxtwv-o7cxqa3vw_B6VIzlLAdBMzFQdKRM8DEG61QX6laHvaKgDsbUaEwNxtTBmJJDho2ZOLC7jQ1_zf-HvgAS3W5z</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Nguyen, Tam H.</creator><creator>Paulino, Glaucio H.</creator><creator>Song, Junho</creator><creator>Le, Chau H.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100401</creationdate><title>A computational paradigm for multiresolution topology optimization (MTOP)</title><author>Nguyen, Tam H. ; Paulino, Glaucio H. ; Song, Junho ; Le, Chau H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a35f47d72322baee50960d062f493dc782e8b9348247dec6af21bfc843ec00ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Density</topic><topic>Design optimization</topic><topic>Discretization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Research Paper</topic><topic>Stiffness matrix</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Tam H.</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><creatorcontrib>Song, Junho</creatorcontrib><creatorcontrib>Le, Chau H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Tam H.</au><au>Paulino, Glaucio H.</au><au>Song, Junho</au><au>Le, Chau H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational paradigm for multiresolution topology optimization (MTOP)</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>41</volume><issue>4</issue><spage>525</spage><epage>539</epage><pages>525-539</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00158-009-0443-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2010-04, Vol.41 (4), p.525-539
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262604154
source SpringerLink Journals - AutoHoldings
subjects Computational Mathematics and Numerical Analysis
Density
Design optimization
Discretization
Engineering
Engineering Design
Finite element method
Research Paper
Stiffness matrix
Theoretical and Applied Mechanics
Topology optimization
title A computational paradigm for multiresolution topology optimization (MTOP)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20paradigm%20for%20multiresolution%20topology%20optimization%20(MTOP)&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Nguyen,%20Tam%20H.&rft.date=2010-04-01&rft.volume=41&rft.issue=4&rft.spage=525&rft.epage=539&rft.pages=525-539&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-009-0443-8&rft_dat=%3Cproquest_cross%3E2262604154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262604154&rft_id=info:pmid/&rfr_iscdi=true