A computational paradigm for multiresolution topology optimization (MTOP)
This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the an...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2010-04, Vol.41 (4), p.525-539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 4 |
container_start_page | 525 |
container_title | Structural and multidisciplinary optimization |
container_volume | 41 |
creator | Nguyen, Tam H. Paulino, Glaucio H. Song, Junho Le, Chau H. |
description | This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the
displacement mesh
(or finite element mesh) to perform the analysis, the
design variable mesh
to perform the optimization, and the
density mesh
(or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh. |
doi_str_mv | 10.1007/s00158-009-0443-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262604154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262604154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a35f47d72322baee50960d062f493dc782e8b9348247dec6af21bfc843ec00ac3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuXxAewssYGFYfxI4iyrikelorIoEjvLdewqVVIH21mUryclCFasZqQ592p0ELqicEcBivsIQDNJAEoCQnAij9CE5jQjVEh5_LsX76foLMYtAEgQ5QTNp9j4tuuTTrXf6QZ3Ouiq3rTY-YDbvkl1sNE3_eGMk-984zd77LtUt_XndwjfvKyWr7cX6MTpJtrLn3mO3h4fVrNnslg-zWfTBTFcskQ0z5woqoJxxtba2gzKHCrImRMlr0whmZXrkgvJBsqaXDtG185Iwa0B0Iafo-uxtwv-o7cxqa3vw_B6VIzlLAdBMzFQdKRM8DEG61QX6laHvaKgDsbUaEwNxtTBmJJDho2ZOLC7jQ1_zf-HvgAS3W5z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262604154</pqid></control><display><type>article</type><title>A computational paradigm for multiresolution topology optimization (MTOP)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nguyen, Tam H. ; Paulino, Glaucio H. ; Song, Junho ; Le, Chau H.</creator><creatorcontrib>Nguyen, Tam H. ; Paulino, Glaucio H. ; Song, Junho ; Le, Chau H.</creatorcontrib><description>This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the
displacement mesh
(or finite element mesh) to perform the analysis, the
design variable mesh
to perform the optimization, and the
density mesh
(or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-009-0443-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Computational Mathematics and Numerical Analysis ; Density ; Design optimization ; Discretization ; Engineering ; Engineering Design ; Finite element method ; Research Paper ; Stiffness matrix ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2010-04, Vol.41 (4), p.525-539</ispartof><rights>Springer-Verlag 2009</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a35f47d72322baee50960d062f493dc782e8b9348247dec6af21bfc843ec00ac3</citedby><cites>FETCH-LOGICAL-c382t-a35f47d72322baee50960d062f493dc782e8b9348247dec6af21bfc843ec00ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-009-0443-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-009-0443-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nguyen, Tam H.</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><creatorcontrib>Song, Junho</creatorcontrib><creatorcontrib>Le, Chau H.</creatorcontrib><title>A computational paradigm for multiresolution topology optimization (MTOP)</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the
displacement mesh
(or finite element mesh) to perform the analysis, the
design variable mesh
to perform the optimization, and the
density mesh
(or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Density</subject><subject>Design optimization</subject><subject>Discretization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Research Paper</subject><subject>Stiffness matrix</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtOwzAQRS0EEuXxAewssYGFYfxI4iyrikelorIoEjvLdewqVVIH21mUryclCFasZqQ592p0ELqicEcBivsIQDNJAEoCQnAij9CE5jQjVEh5_LsX76foLMYtAEgQ5QTNp9j4tuuTTrXf6QZ3Ouiq3rTY-YDbvkl1sNE3_eGMk-984zd77LtUt_XndwjfvKyWr7cX6MTpJtrLn3mO3h4fVrNnslg-zWfTBTFcskQ0z5woqoJxxtba2gzKHCrImRMlr0whmZXrkgvJBsqaXDtG185Iwa0B0Iafo-uxtwv-o7cxqa3vw_B6VIzlLAdBMzFQdKRM8DEG61QX6laHvaKgDsbUaEwNxtTBmJJDho2ZOLC7jQ1_zf-HvgAS3W5z</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Nguyen, Tam H.</creator><creator>Paulino, Glaucio H.</creator><creator>Song, Junho</creator><creator>Le, Chau H.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100401</creationdate><title>A computational paradigm for multiresolution topology optimization (MTOP)</title><author>Nguyen, Tam H. ; Paulino, Glaucio H. ; Song, Junho ; Le, Chau H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a35f47d72322baee50960d062f493dc782e8b9348247dec6af21bfc843ec00ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Density</topic><topic>Design optimization</topic><topic>Discretization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Research Paper</topic><topic>Stiffness matrix</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Tam H.</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><creatorcontrib>Song, Junho</creatorcontrib><creatorcontrib>Le, Chau H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Tam H.</au><au>Paulino, Glaucio H.</au><au>Song, Junho</au><au>Le, Chau H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational paradigm for multiresolution topology optimization (MTOP)</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>41</volume><issue>4</issue><spage>525</spage><epage>539</epage><pages>525-539</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the
displacement mesh
(or finite element mesh) to perform the analysis, the
design variable mesh
to perform the optimization, and the
density mesh
(or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00158-009-0443-8</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2010-04, Vol.41 (4), p.525-539 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262604154 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computational Mathematics and Numerical Analysis Density Design optimization Discretization Engineering Engineering Design Finite element method Research Paper Stiffness matrix Theoretical and Applied Mechanics Topology optimization |
title | A computational paradigm for multiresolution topology optimization (MTOP) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20paradigm%20for%20multiresolution%20topology%20optimization%20(MTOP)&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Nguyen,%20Tam%20H.&rft.date=2010-04-01&rft.volume=41&rft.issue=4&rft.spage=525&rft.epage=539&rft.pages=525-539&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-009-0443-8&rft_dat=%3Cproquest_cross%3E2262604154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262604154&rft_id=info:pmid/&rfr_iscdi=true |