Applied soft computing for optimum design of structures
In this study a critical assessment of three metaheuristic optimization algorithms, namely differential evolution, harmony search and particle swarm optimization, is performed with reference to their efficiency and robustness for the optimum design of real-world structures. Furthermore, a neural net...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2012-06, Vol.45 (6), p.787-799 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 799 |
---|---|
container_issue | 6 |
container_start_page | 787 |
container_title | Structural and multidisciplinary optimization |
container_volume | 45 |
creator | Lagaros, Nikos D. Papadrakakis, Manolis |
description | In this study a critical assessment of three metaheuristic optimization algorithms, namely differential evolution, harmony search and particle swarm optimization, is performed with reference to their efficiency and robustness for the optimum design of real-world structures. Furthermore, a neural network based prediction scheme of the structural response, required to assess the quality of each candidate design during the optimization procedure, is proposed. The proposed methodology is applied to an overhead crane structure using different finite element simulations corresponding to a solid discretization as well as mixed discretizations with shell-solid and beam-solid elements. The number of degrees of freedom (dof) resulted for the simulation of the structural response varies in the range of 60,000 to 1,400,000 dof leading to highly computational intensive problems. |
doi_str_mv | 10.1007/s00158-011-0741-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262604020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262604020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-262df5fc37d02ac10ad3882b49419d51288eb6c4aa289533af232503291f26a13</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI5-gLuA6-h7Sdqmy2FQRxhwo-AuZNJk6DBtapIu_Hs7VHTl6t3FPffBIeQW4R4BqocEgIVigMigksjqM7LAEguGUqnz31x9XJKrlA4AoEDWC1KthuHYuoam4DO1oRvG3PZ76kOkYchtN3a0cand9zR4mnIcbR6jS9fkwptjcjc_d0nenx7f1hu2fX1-Wa-2zAosM-Mlb3zhraga4MYimEYoxXeyllg3BXKl3K600hiu6kII47ngBQheo-elQbEkd_PuEMPn6FLWhzDGfnqp-TReggQOUwvnlo0hpei8HmLbmfilEfTJj5796MmPPvnR9cTwmUlTt9-7-Lf8P_QNRhRmnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262604020</pqid></control><display><type>article</type><title>Applied soft computing for optimum design of structures</title><source>SpringerLink Journals</source><creator>Lagaros, Nikos D. ; Papadrakakis, Manolis</creator><creatorcontrib>Lagaros, Nikos D. ; Papadrakakis, Manolis</creatorcontrib><description>In this study a critical assessment of three metaheuristic optimization algorithms, namely differential evolution, harmony search and particle swarm optimization, is performed with reference to their efficiency and robustness for the optimum design of real-world structures. Furthermore, a neural network based prediction scheme of the structural response, required to assess the quality of each candidate design during the optimization procedure, is proposed. The proposed methodology is applied to an overhead crane structure using different finite element simulations corresponding to a solid discretization as well as mixed discretizations with shell-solid and beam-solid elements. The number of degrees of freedom (dof) resulted for the simulation of the structural response varies in the range of 60,000 to 1,400,000 dof leading to highly computational intensive problems.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-011-0741-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Computational Mathematics and Numerical Analysis ; Computer simulation ; Cranes ; Design optimization ; Engineering ; Engineering Design ; Evolutionary algorithms ; Evolutionary computation ; Finite element method ; Heuristic methods ; Neural networks ; Particle swarm optimization ; Quality assessment ; Research Paper ; Soft computing ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2012-06, Vol.45 (6), p.787-799</ispartof><rights>Springer-Verlag 2011</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-262df5fc37d02ac10ad3882b49419d51288eb6c4aa289533af232503291f26a13</citedby><cites>FETCH-LOGICAL-c316t-262df5fc37d02ac10ad3882b49419d51288eb6c4aa289533af232503291f26a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-011-0741-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-011-0741-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Lagaros, Nikos D.</creatorcontrib><creatorcontrib>Papadrakakis, Manolis</creatorcontrib><title>Applied soft computing for optimum design of structures</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>In this study a critical assessment of three metaheuristic optimization algorithms, namely differential evolution, harmony search and particle swarm optimization, is performed with reference to their efficiency and robustness for the optimum design of real-world structures. Furthermore, a neural network based prediction scheme of the structural response, required to assess the quality of each candidate design during the optimization procedure, is proposed. The proposed methodology is applied to an overhead crane structure using different finite element simulations corresponding to a solid discretization as well as mixed discretizations with shell-solid and beam-solid elements. The number of degrees of freedom (dof) resulted for the simulation of the structural response varies in the range of 60,000 to 1,400,000 dof leading to highly computational intensive problems.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Cranes</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Finite element method</subject><subject>Heuristic methods</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Quality assessment</subject><subject>Research Paper</subject><subject>Soft computing</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFKxDAURYMoOI5-gLuA6-h7Sdqmy2FQRxhwo-AuZNJk6DBtapIu_Hs7VHTl6t3FPffBIeQW4R4BqocEgIVigMigksjqM7LAEguGUqnz31x9XJKrlA4AoEDWC1KthuHYuoam4DO1oRvG3PZ76kOkYchtN3a0cand9zR4mnIcbR6jS9fkwptjcjc_d0nenx7f1hu2fX1-Wa-2zAosM-Mlb3zhraga4MYimEYoxXeyllg3BXKl3K600hiu6kII47ngBQheo-elQbEkd_PuEMPn6FLWhzDGfnqp-TReggQOUwvnlo0hpei8HmLbmfilEfTJj5796MmPPvnR9cTwmUlTt9-7-Lf8P_QNRhRmnQ</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Lagaros, Nikos D.</creator><creator>Papadrakakis, Manolis</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120601</creationdate><title>Applied soft computing for optimum design of structures</title><author>Lagaros, Nikos D. ; Papadrakakis, Manolis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-262df5fc37d02ac10ad3882b49419d51288eb6c4aa289533af232503291f26a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Cranes</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Finite element method</topic><topic>Heuristic methods</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Quality assessment</topic><topic>Research Paper</topic><topic>Soft computing</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagaros, Nikos D.</creatorcontrib><creatorcontrib>Papadrakakis, Manolis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagaros, Nikos D.</au><au>Papadrakakis, Manolis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applied soft computing for optimum design of structures</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>45</volume><issue>6</issue><spage>787</spage><epage>799</epage><pages>787-799</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>In this study a critical assessment of three metaheuristic optimization algorithms, namely differential evolution, harmony search and particle swarm optimization, is performed with reference to their efficiency and robustness for the optimum design of real-world structures. Furthermore, a neural network based prediction scheme of the structural response, required to assess the quality of each candidate design during the optimization procedure, is proposed. The proposed methodology is applied to an overhead crane structure using different finite element simulations corresponding to a solid discretization as well as mixed discretizations with shell-solid and beam-solid elements. The number of degrees of freedom (dof) resulted for the simulation of the structural response varies in the range of 60,000 to 1,400,000 dof leading to highly computational intensive problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00158-011-0741-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2012-06, Vol.45 (6), p.787-799 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262604020 |
source | SpringerLink Journals |
subjects | Computational Mathematics and Numerical Analysis Computer simulation Cranes Design optimization Engineering Engineering Design Evolutionary algorithms Evolutionary computation Finite element method Heuristic methods Neural networks Particle swarm optimization Quality assessment Research Paper Soft computing Theoretical and Applied Mechanics |
title | Applied soft computing for optimum design of structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applied%20soft%20computing%20for%20optimum%20design%20of%20structures&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Lagaros,%20Nikos%20D.&rft.date=2012-06-01&rft.volume=45&rft.issue=6&rft.spage=787&rft.epage=799&rft.pages=787-799&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-011-0741-9&rft_dat=%3Cproquest_cross%3E2262604020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262604020&rft_id=info:pmid/&rfr_iscdi=true |