Multi-constrained topology optimization via the topological sensitivity
The objective of this paper is to introduce and demonstrate a robust method for multi-constrained topology optimization. The method is derived by combining the topological sensitivity with the classic augmented Lagrangian formulation. The primary advantages of the proposed method are: (1) it rests o...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2015-05, Vol.51 (5), p.987-1001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1001 |
---|---|
container_issue | 5 |
container_start_page | 987 |
container_title | Structural and multidisciplinary optimization |
container_volume | 51 |
creator | Deng, Shiguang Suresh, Krishnan |
description | The objective of this paper is to introduce and demonstrate a robust method for multi-constrained topology optimization. The method is derived by combining the topological sensitivity with the classic augmented Lagrangian formulation.
The primary advantages of the proposed method are: (1) it rests on well-established augmented Lagrangian formulation for constrained optimization, (2) the augmented topological level-set can be derived systematically for an arbitrary set of loads and constraints, and (3) the level-set can be updated efficiently. The method is illustrated through numerical experiments. |
doi_str_mv | 10.1007/s00158-014-1188-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262591651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262591651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-9e23230282c2e1c62c0ce9e3aa82d652abdc9f4c1fd4d4a9281ca4f285f7a543</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52hmNkmzRylaBcVLD95CzGZrynazJmmh_nq3rB8nTzMwz_sOPIRcArsGxmY3iTEQijLgFEApKo_IBCQIClyp49999npKzlJaM8YU49WELJ63bfbUhi7laHzn6iKHPrRhtS9Cn_3Gf5rsQ1fsvCnyu_u5emvaIrku-ex3Pu_PyUlj2uQuvueULO_vlvMH-vSyeJzfPlFbKplp5bDEkqFCiw6sRMusq1xpjMJaCjRvta0abqGpec1NhQqs4Q0q0cyM4OWUXI21fQwfW5eyXodt7IaPGlGiqEAKGCgYKRtDStE1uo9-Y-JeA9MHXXrUpQdd-qBLyyGDYyYNbLdy8a_5_9AX1AlusA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262591651</pqid></control><display><type>article</type><title>Multi-constrained topology optimization via the topological sensitivity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, Shiguang ; Suresh, Krishnan</creator><creatorcontrib>Deng, Shiguang ; Suresh, Krishnan</creatorcontrib><description>The objective of this paper is to introduce and demonstrate a robust method for multi-constrained topology optimization. The method is derived by combining the topological sensitivity with the classic augmented Lagrangian formulation.
The primary advantages of the proposed method are: (1) it rests on well-established augmented Lagrangian formulation for constrained optimization, (2) the augmented topological level-set can be derived systematically for an arbitrary set of loads and constraints, and (3) the level-set can be updated efficiently. The method is illustrated through numerical experiments.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-014-1188-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Constraints ; Engineering ; Engineering Design ; Research Paper ; Robustness (mathematics) ; Sensitivity ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2015-05, Vol.51 (5), p.987-1001</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-9e23230282c2e1c62c0ce9e3aa82d652abdc9f4c1fd4d4a9281ca4f285f7a543</citedby><cites>FETCH-LOGICAL-c386t-9e23230282c2e1c62c0ce9e3aa82d652abdc9f4c1fd4d4a9281ca4f285f7a543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-014-1188-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-014-1188-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Deng, Shiguang</creatorcontrib><creatorcontrib>Suresh, Krishnan</creatorcontrib><title>Multi-constrained topology optimization via the topological sensitivity</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>The objective of this paper is to introduce and demonstrate a robust method for multi-constrained topology optimization. The method is derived by combining the topological sensitivity with the classic augmented Lagrangian formulation.
The primary advantages of the proposed method are: (1) it rests on well-established augmented Lagrangian formulation for constrained optimization, (2) the augmented topological level-set can be derived systematically for an arbitrary set of loads and constraints, and (3) the level-set can be updated efficiently. The method is illustrated through numerical experiments.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constraints</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Research Paper</subject><subject>Robustness (mathematics)</subject><subject>Sensitivity</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52hmNkmzRylaBcVLD95CzGZrynazJmmh_nq3rB8nTzMwz_sOPIRcArsGxmY3iTEQijLgFEApKo_IBCQIClyp49999npKzlJaM8YU49WELJ63bfbUhi7laHzn6iKHPrRhtS9Cn_3Gf5rsQ1fsvCnyu_u5emvaIrku-ex3Pu_PyUlj2uQuvueULO_vlvMH-vSyeJzfPlFbKplp5bDEkqFCiw6sRMusq1xpjMJaCjRvta0abqGpec1NhQqs4Q0q0cyM4OWUXI21fQwfW5eyXodt7IaPGlGiqEAKGCgYKRtDStE1uo9-Y-JeA9MHXXrUpQdd-qBLyyGDYyYNbLdy8a_5_9AX1AlusA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Deng, Shiguang</creator><creator>Suresh, Krishnan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150501</creationdate><title>Multi-constrained topology optimization via the topological sensitivity</title><author>Deng, Shiguang ; Suresh, Krishnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-9e23230282c2e1c62c0ce9e3aa82d652abdc9f4c1fd4d4a9281ca4f285f7a543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constraints</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Research Paper</topic><topic>Robustness (mathematics)</topic><topic>Sensitivity</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shiguang</creatorcontrib><creatorcontrib>Suresh, Krishnan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shiguang</au><au>Suresh, Krishnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-constrained topology optimization via the topological sensitivity</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>51</volume><issue>5</issue><spage>987</spage><epage>1001</epage><pages>987-1001</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The objective of this paper is to introduce and demonstrate a robust method for multi-constrained topology optimization. The method is derived by combining the topological sensitivity with the classic augmented Lagrangian formulation.
The primary advantages of the proposed method are: (1) it rests on well-established augmented Lagrangian formulation for constrained optimization, (2) the augmented topological level-set can be derived systematically for an arbitrary set of loads and constraints, and (3) the level-set can be updated efficiently. The method is illustrated through numerical experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-014-1188-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2015-05, Vol.51 (5), p.987-1001 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262591651 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computational Mathematics and Numerical Analysis Constraints Engineering Engineering Design Research Paper Robustness (mathematics) Sensitivity Theoretical and Applied Mechanics Topology optimization |
title | Multi-constrained topology optimization via the topological sensitivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-constrained%20topology%20optimization%20via%20the%20topological%20sensitivity&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Deng,%20Shiguang&rft.date=2015-05-01&rft.volume=51&rft.issue=5&rft.spage=987&rft.epage=1001&rft.pages=987-1001&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-014-1188-6&rft_dat=%3Cproquest_cross%3E2262591651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262591651&rft_id=info:pmid/&rfr_iscdi=true |