Simultaneous material and structural optimization by multiscale topology optimization

This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2016-11, Vol.54 (5), p.1267-1281
Hauptverfasser: Sivapuram, Raghavendra, Dunning, Peter D., Kim, H. Alicia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1281
container_issue 5
container_start_page 1267
container_title Structural and multidisciplinary optimization
container_volume 54
creator Sivapuram, Raghavendra
Dunning, Peter D.
Kim, H. Alicia
description This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits.
doi_str_mv 10.1007/s00158-016-1519-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262590323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880814503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-3bbd559d2c3024f07bde5f4e55f1a6ee92b5a7c218d55902e71ecdfcc66350253</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz9WZtGnToyx-wYIHXfAW0jRdsrRNTVLY9dfbUhE96Glm4HnegZeQS4RrBMhvPAAyHgNmMTIs4v0RWWCGLMaU8-PvPX87JWfe7wCAQ1osyObFtEMTZKft4KNWBu2MbCLZVZEPblBhcONp-2Ba8yGDsV1UHqJJMV7JRkfB9rax28Mv5pyc1LLx-uJrLsnm_u519Rivnx-eVrfrWKUsCXFSlhVjRUVVAjStIS8rzepUM1ajzLQuaMlkrijyCQOqc9SqqpXKsoQBZcmSXM25vbPvg_ZB7OzguvGloDSjo5PQ5D8KOQeOKYOJwplSznrvdC16Z1rpDgJBTB2LuWMxdiymjsV-dOjs-JHtttr9SP5T-gT_7IEC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262590323</pqid></control><display><type>article</type><title>Simultaneous material and structural optimization by multiscale topology optimization</title><source>SpringerLink Journals</source><creator>Sivapuram, Raghavendra ; Dunning, Peter D. ; Kim, H. Alicia</creator><creatorcontrib>Sivapuram, Raghavendra ; Dunning, Peter D. ; Kim, H. Alicia</creatorcontrib><description>This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-016-1519-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computing time ; Decomposition ; Design optimization ; Engineering ; Engineering Design ; Homogenization ; Microstructure ; Parallel processing ; Research Paper ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2016-11, Vol.54 (5), p.1267-1281</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-3bbd559d2c3024f07bde5f4e55f1a6ee92b5a7c218d55902e71ecdfcc66350253</citedby><cites>FETCH-LOGICAL-c453t-3bbd559d2c3024f07bde5f4e55f1a6ee92b5a7c218d55902e71ecdfcc66350253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-016-1519-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-016-1519-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sivapuram, Raghavendra</creatorcontrib><creatorcontrib>Dunning, Peter D.</creatorcontrib><creatorcontrib>Kim, H. Alicia</creatorcontrib><title>Simultaneous material and structural optimization by multiscale topology optimization</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing time</subject><subject>Decomposition</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Homogenization</subject><subject>Microstructure</subject><subject>Parallel processing</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz9WZtGnToyx-wYIHXfAW0jRdsrRNTVLY9dfbUhE96Glm4HnegZeQS4RrBMhvPAAyHgNmMTIs4v0RWWCGLMaU8-PvPX87JWfe7wCAQ1osyObFtEMTZKft4KNWBu2MbCLZVZEPblBhcONp-2Ba8yGDsV1UHqJJMV7JRkfB9rax28Mv5pyc1LLx-uJrLsnm_u519Rivnx-eVrfrWKUsCXFSlhVjRUVVAjStIS8rzepUM1ajzLQuaMlkrijyCQOqc9SqqpXKsoQBZcmSXM25vbPvg_ZB7OzguvGloDSjo5PQ5D8KOQeOKYOJwplSznrvdC16Z1rpDgJBTB2LuWMxdiymjsV-dOjs-JHtttr9SP5T-gT_7IEC</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Sivapuram, Raghavendra</creator><creator>Dunning, Peter D.</creator><creator>Kim, H. Alicia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161101</creationdate><title>Simultaneous material and structural optimization by multiscale topology optimization</title><author>Sivapuram, Raghavendra ; Dunning, Peter D. ; Kim, H. Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-3bbd559d2c3024f07bde5f4e55f1a6ee92b5a7c218d55902e71ecdfcc66350253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing time</topic><topic>Decomposition</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Homogenization</topic><topic>Microstructure</topic><topic>Parallel processing</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivapuram, Raghavendra</creatorcontrib><creatorcontrib>Dunning, Peter D.</creatorcontrib><creatorcontrib>Kim, H. Alicia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivapuram, Raghavendra</au><au>Dunning, Peter D.</au><au>Kim, H. Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous material and structural optimization by multiscale topology optimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>54</volume><issue>5</issue><spage>1267</spage><epage>1281</epage><pages>1267-1281</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-016-1519-x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2016-11, Vol.54 (5), p.1267-1281
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262590323
source SpringerLink Journals
subjects Computational Mathematics and Numerical Analysis
Computing time
Decomposition
Design optimization
Engineering
Engineering Design
Homogenization
Microstructure
Parallel processing
Research Paper
Theoretical and Applied Mechanics
Topology optimization
title Simultaneous material and structural optimization by multiscale topology optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20material%20and%20structural%20optimization%20by%20multiscale%20topology%20optimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Sivapuram,%20Raghavendra&rft.date=2016-11-01&rft.volume=54&rft.issue=5&rft.spage=1267&rft.epage=1281&rft.pages=1267-1281&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-016-1519-x&rft_dat=%3Cproquest_cross%3E1880814503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262590323&rft_id=info:pmid/&rfr_iscdi=true