Simultaneous material and structural optimization by multiscale topology optimization
This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscal...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2016-11, Vol.54 (5), p.1267-1281 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1281 |
---|---|
container_issue | 5 |
container_start_page | 1267 |
container_title | Structural and multidisciplinary optimization |
container_volume | 54 |
creator | Sivapuram, Raghavendra Dunning, Peter D. Kim, H. Alicia |
description | This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits. |
doi_str_mv | 10.1007/s00158-016-1519-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262590323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880814503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-3bbd559d2c3024f07bde5f4e55f1a6ee92b5a7c218d55902e71ecdfcc66350253</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz9WZtGnToyx-wYIHXfAW0jRdsrRNTVLY9dfbUhE96Glm4HnegZeQS4RrBMhvPAAyHgNmMTIs4v0RWWCGLMaU8-PvPX87JWfe7wCAQ1osyObFtEMTZKft4KNWBu2MbCLZVZEPblBhcONp-2Ba8yGDsV1UHqJJMV7JRkfB9rax28Mv5pyc1LLx-uJrLsnm_u519Rivnx-eVrfrWKUsCXFSlhVjRUVVAjStIS8rzepUM1ajzLQuaMlkrijyCQOqc9SqqpXKsoQBZcmSXM25vbPvg_ZB7OzguvGloDSjo5PQ5D8KOQeOKYOJwplSznrvdC16Z1rpDgJBTB2LuWMxdiymjsV-dOjs-JHtttr9SP5T-gT_7IEC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262590323</pqid></control><display><type>article</type><title>Simultaneous material and structural optimization by multiscale topology optimization</title><source>SpringerLink Journals</source><creator>Sivapuram, Raghavendra ; Dunning, Peter D. ; Kim, H. Alicia</creator><creatorcontrib>Sivapuram, Raghavendra ; Dunning, Peter D. ; Kim, H. Alicia</creatorcontrib><description>This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-016-1519-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computing time ; Decomposition ; Design optimization ; Engineering ; Engineering Design ; Homogenization ; Microstructure ; Parallel processing ; Research Paper ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2016-11, Vol.54 (5), p.1267-1281</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-3bbd559d2c3024f07bde5f4e55f1a6ee92b5a7c218d55902e71ecdfcc66350253</citedby><cites>FETCH-LOGICAL-c453t-3bbd559d2c3024f07bde5f4e55f1a6ee92b5a7c218d55902e71ecdfcc66350253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-016-1519-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-016-1519-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sivapuram, Raghavendra</creatorcontrib><creatorcontrib>Dunning, Peter D.</creatorcontrib><creatorcontrib>Kim, H. Alicia</creatorcontrib><title>Simultaneous material and structural optimization by multiscale topology optimization</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing time</subject><subject>Decomposition</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Homogenization</subject><subject>Microstructure</subject><subject>Parallel processing</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz9WZtGnToyx-wYIHXfAW0jRdsrRNTVLY9dfbUhE96Glm4HnegZeQS4RrBMhvPAAyHgNmMTIs4v0RWWCGLMaU8-PvPX87JWfe7wCAQ1osyObFtEMTZKft4KNWBu2MbCLZVZEPblBhcONp-2Ba8yGDsV1UHqJJMV7JRkfB9rax28Mv5pyc1LLx-uJrLsnm_u519Rivnx-eVrfrWKUsCXFSlhVjRUVVAjStIS8rzepUM1ajzLQuaMlkrijyCQOqc9SqqpXKsoQBZcmSXM25vbPvg_ZB7OzguvGloDSjo5PQ5D8KOQeOKYOJwplSznrvdC16Z1rpDgJBTB2LuWMxdiymjsV-dOjs-JHtttr9SP5T-gT_7IEC</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Sivapuram, Raghavendra</creator><creator>Dunning, Peter D.</creator><creator>Kim, H. Alicia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20161101</creationdate><title>Simultaneous material and structural optimization by multiscale topology optimization</title><author>Sivapuram, Raghavendra ; Dunning, Peter D. ; Kim, H. Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-3bbd559d2c3024f07bde5f4e55f1a6ee92b5a7c218d55902e71ecdfcc66350253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing time</topic><topic>Decomposition</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Homogenization</topic><topic>Microstructure</topic><topic>Parallel processing</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivapuram, Raghavendra</creatorcontrib><creatorcontrib>Dunning, Peter D.</creatorcontrib><creatorcontrib>Kim, H. Alicia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivapuram, Raghavendra</au><au>Dunning, Peter D.</au><au>Kim, H. Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous material and structural optimization by multiscale topology optimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>54</volume><issue>5</issue><spage>1267</spage><epage>1281</epage><pages>1267-1281</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper introduces a new approach to multiscale optimization, where design optimization is applied at two scales: the macroscale, where the structure is optimized, and the microscale, where the material is optimized. Thus, structure and material are optimized simultaneously. We approach multiscale design optimization by linearizing and formulating a new way to decompose into macro and microscale design problems in such a way that solving the decomposed problems separately lead to an overall optimum solution. In addition, the macro and microstructural designs are coupled tightly through homogenization and inverse homogenization. This approach is generic in that it allows any number of unique microstructures and can be applied to a wide range of design problems. An advantage of decomposing the problem in this physical way is that it is potentially straight forward to specify additional design requirements at a specific scale or in specific regions of the design domain. The decomposition approach also allows an easy parallelization of the computational methodology and this enables the computational time to be maintained at a practical level. We demonstrate the proposed approach using the level-set topology optimization at both scales, i.e. macrostructural topological design and microstructural topology of architected material. A series of optimization problems, minimizing compliance and compliant mechanism are solved for verification and investigation of potential benefits.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-016-1519-x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2016-11, Vol.54 (5), p.1267-1281 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262590323 |
source | SpringerLink Journals |
subjects | Computational Mathematics and Numerical Analysis Computing time Decomposition Design optimization Engineering Engineering Design Homogenization Microstructure Parallel processing Research Paper Theoretical and Applied Mechanics Topology optimization |
title | Simultaneous material and structural optimization by multiscale topology optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20material%20and%20structural%20optimization%20by%20multiscale%20topology%20optimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Sivapuram,%20Raghavendra&rft.date=2016-11-01&rft.volume=54&rft.issue=5&rft.spage=1267&rft.epage=1281&rft.pages=1267-1281&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-016-1519-x&rft_dat=%3Cproquest_cross%3E1880814503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262590323&rft_id=info:pmid/&rfr_iscdi=true |