Performance study of multi-fidelity gradient enhanced kriging

Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2015-05, Vol.51 (5), p.1017-1033
Hauptverfasser: Ulaganathan, Selvakumar, Couckuyt, Ivo, Ferranti, Francesco, Laermans, Eric, Dhaene, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1033
container_issue 5
container_start_page 1017
container_title Structural and multidisciplinary optimization
container_volume 51
creator Ulaganathan, Selvakumar
Couckuyt, Ivo
Ferranti, Francesco
Laermans, Eric
Dhaene, Tom
description Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples.
doi_str_mv 10.1007/s00158-014-1192-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262590067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262590067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2948e97e4ab21ab119d931c89598291afaa75eda2902f7e25cb7599cf5b4a94e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuXLu2BwZU8SUhwQASm-Uk55DSJsVOpPbfkyoIJqa74XnfOz2MnSNcIoC-SgCoDAeUHNEKvj1gE5yj4iiNOfzd9fsxO0lpCQAGpJ2w6xeKoY1r3xSUpa4vd1kbsnW_6moe6pJWdbfLqujLmpouo-ZjD5bZZ6yruqlO2VHwq0RnP3PK3u5uXxcP_On5_nFx88QLKWzHhZWGrCbpc4E-Hx4s7QwLY5U1wqIP3mtFpRcWRNAkVJFrZW0RVC69lTSbsouxdxPbr55S55ZtH5vhpBNiLpQFmOuBwpEqYptSpOA2sV77uHMIbm_JjZbcYMntLbntkBFjJg1sU1H8a_4_9A02oGqa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262590067</pqid></control><display><type>article</type><title>Performance study of multi-fidelity gradient enhanced kriging</title><source>SpringerLink Journals</source><creator>Ulaganathan, Selvakumar ; Couckuyt, Ivo ; Ferranti, Francesco ; Laermans, Eric ; Dhaene, Tom</creator><creatorcontrib>Ulaganathan, Selvakumar ; Couckuyt, Ivo ; Ferranti, Francesco ; Laermans, Eric ; Dhaene, Tom</creatorcontrib><description>Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-014-1192-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computer simulation ; Engineering ; Engineering Design ; Kriging ; Model accuracy ; Recursive methods ; Research Paper ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2015-05, Vol.51 (5), p.1017-1033</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2948e97e4ab21ab119d931c89598291afaa75eda2902f7e25cb7599cf5b4a94e3</citedby><cites>FETCH-LOGICAL-c429t-2948e97e4ab21ab119d931c89598291afaa75eda2902f7e25cb7599cf5b4a94e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-014-1192-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-014-1192-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ulaganathan, Selvakumar</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Ferranti, Francesco</creatorcontrib><creatorcontrib>Laermans, Eric</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><title>Performance study of multi-fidelity gradient enhanced kriging</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Kriging</subject><subject>Model accuracy</subject><subject>Recursive methods</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuXLu2BwZU8SUhwQASm-Uk55DSJsVOpPbfkyoIJqa74XnfOz2MnSNcIoC-SgCoDAeUHNEKvj1gE5yj4iiNOfzd9fsxO0lpCQAGpJ2w6xeKoY1r3xSUpa4vd1kbsnW_6moe6pJWdbfLqujLmpouo-ZjD5bZZ6yruqlO2VHwq0RnP3PK3u5uXxcP_On5_nFx88QLKWzHhZWGrCbpc4E-Hx4s7QwLY5U1wqIP3mtFpRcWRNAkVJFrZW0RVC69lTSbsouxdxPbr55S55ZtH5vhpBNiLpQFmOuBwpEqYptSpOA2sV77uHMIbm_JjZbcYMntLbntkBFjJg1sU1H8a_4_9A02oGqa</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Ulaganathan, Selvakumar</creator><creator>Couckuyt, Ivo</creator><creator>Ferranti, Francesco</creator><creator>Laermans, Eric</creator><creator>Dhaene, Tom</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150501</creationdate><title>Performance study of multi-fidelity gradient enhanced kriging</title><author>Ulaganathan, Selvakumar ; Couckuyt, Ivo ; Ferranti, Francesco ; Laermans, Eric ; Dhaene, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2948e97e4ab21ab119d931c89598291afaa75eda2902f7e25cb7599cf5b4a94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Kriging</topic><topic>Model accuracy</topic><topic>Recursive methods</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulaganathan, Selvakumar</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Ferranti, Francesco</creatorcontrib><creatorcontrib>Laermans, Eric</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulaganathan, Selvakumar</au><au>Couckuyt, Ivo</au><au>Ferranti, Francesco</au><au>Laermans, Eric</au><au>Dhaene, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance study of multi-fidelity gradient enhanced kriging</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>51</volume><issue>5</issue><spage>1017</spage><epage>1033</epage><pages>1017-1033</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-014-1192-x</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2015-05, Vol.51 (5), p.1017-1033
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262590067
source SpringerLink Journals
subjects Computational Mathematics and Numerical Analysis
Computer simulation
Engineering
Engineering Design
Kriging
Model accuracy
Recursive methods
Research Paper
Theoretical and Applied Mechanics
title Performance study of multi-fidelity gradient enhanced kriging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20study%20of%20multi-fidelity%20gradient%20enhanced%20kriging&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Ulaganathan,%20Selvakumar&rft.date=2015-05-01&rft.volume=51&rft.issue=5&rft.spage=1017&rft.epage=1033&rft.pages=1017-1033&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-014-1192-x&rft_dat=%3Cproquest_cross%3E2262590067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262590067&rft_id=info:pmid/&rfr_iscdi=true