Performance study of multi-fidelity gradient enhanced kriging
Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2015-05, Vol.51 (5), p.1017-1033 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1033 |
---|---|
container_issue | 5 |
container_start_page | 1017 |
container_title | Structural and multidisciplinary optimization |
container_volume | 51 |
creator | Ulaganathan, Selvakumar Couckuyt, Ivo Ferranti, Francesco Laermans, Eric Dhaene, Tom |
description | Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples. |
doi_str_mv | 10.1007/s00158-014-1192-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262590067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262590067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2948e97e4ab21ab119d931c89598291afaa75eda2902f7e25cb7599cf5b4a94e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuXLu2BwZU8SUhwQASm-Uk55DSJsVOpPbfkyoIJqa74XnfOz2MnSNcIoC-SgCoDAeUHNEKvj1gE5yj4iiNOfzd9fsxO0lpCQAGpJ2w6xeKoY1r3xSUpa4vd1kbsnW_6moe6pJWdbfLqujLmpouo-ZjD5bZZ6yruqlO2VHwq0RnP3PK3u5uXxcP_On5_nFx88QLKWzHhZWGrCbpc4E-Hx4s7QwLY5U1wqIP3mtFpRcWRNAkVJFrZW0RVC69lTSbsouxdxPbr55S55ZtH5vhpBNiLpQFmOuBwpEqYptSpOA2sV77uHMIbm_JjZbcYMntLbntkBFjJg1sU1H8a_4_9A02oGqa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262590067</pqid></control><display><type>article</type><title>Performance study of multi-fidelity gradient enhanced kriging</title><source>SpringerLink Journals</source><creator>Ulaganathan, Selvakumar ; Couckuyt, Ivo ; Ferranti, Francesco ; Laermans, Eric ; Dhaene, Tom</creator><creatorcontrib>Ulaganathan, Selvakumar ; Couckuyt, Ivo ; Ferranti, Francesco ; Laermans, Eric ; Dhaene, Tom</creatorcontrib><description>Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-014-1192-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Computer simulation ; Engineering ; Engineering Design ; Kriging ; Model accuracy ; Recursive methods ; Research Paper ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2015-05, Vol.51 (5), p.1017-1033</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2948e97e4ab21ab119d931c89598291afaa75eda2902f7e25cb7599cf5b4a94e3</citedby><cites>FETCH-LOGICAL-c429t-2948e97e4ab21ab119d931c89598291afaa75eda2902f7e25cb7599cf5b4a94e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-014-1192-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-014-1192-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ulaganathan, Selvakumar</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Ferranti, Francesco</creatorcontrib><creatorcontrib>Laermans, Eric</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><title>Performance study of multi-fidelity gradient enhanced kriging</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Kriging</subject><subject>Model accuracy</subject><subject>Recursive methods</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvuXLu2BwZU8SUhwQASm-Uk55DSJsVOpPbfkyoIJqa74XnfOz2MnSNcIoC-SgCoDAeUHNEKvj1gE5yj4iiNOfzd9fsxO0lpCQAGpJ2w6xeKoY1r3xSUpa4vd1kbsnW_6moe6pJWdbfLqujLmpouo-ZjD5bZZ6yruqlO2VHwq0RnP3PK3u5uXxcP_On5_nFx88QLKWzHhZWGrCbpc4E-Hx4s7QwLY5U1wqIP3mtFpRcWRNAkVJFrZW0RVC69lTSbsouxdxPbr55S55ZtH5vhpBNiLpQFmOuBwpEqYptSpOA2sV77uHMIbm_JjZbcYMntLbntkBFjJg1sU1H8a_4_9A02oGqa</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Ulaganathan, Selvakumar</creator><creator>Couckuyt, Ivo</creator><creator>Ferranti, Francesco</creator><creator>Laermans, Eric</creator><creator>Dhaene, Tom</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150501</creationdate><title>Performance study of multi-fidelity gradient enhanced kriging</title><author>Ulaganathan, Selvakumar ; Couckuyt, Ivo ; Ferranti, Francesco ; Laermans, Eric ; Dhaene, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2948e97e4ab21ab119d931c89598291afaa75eda2902f7e25cb7599cf5b4a94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Kriging</topic><topic>Model accuracy</topic><topic>Recursive methods</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulaganathan, Selvakumar</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Ferranti, Francesco</creatorcontrib><creatorcontrib>Laermans, Eric</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulaganathan, Selvakumar</au><au>Couckuyt, Ivo</au><au>Ferranti, Francesco</au><au>Laermans, Eric</au><au>Dhaene, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance study of multi-fidelity gradient enhanced kriging</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>51</volume><issue>5</issue><spage>1017</spage><epage>1033</epage><pages>1017-1033</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-014-1192-x</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2015-05, Vol.51 (5), p.1017-1033 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262590067 |
source | SpringerLink Journals |
subjects | Computational Mathematics and Numerical Analysis Computer simulation Engineering Engineering Design Kriging Model accuracy Recursive methods Research Paper Theoretical and Applied Mechanics |
title | Performance study of multi-fidelity gradient enhanced kriging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20study%20of%20multi-fidelity%20gradient%20enhanced%20kriging&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Ulaganathan,%20Selvakumar&rft.date=2015-05-01&rft.volume=51&rft.issue=5&rft.spage=1017&rft.epage=1033&rft.pages=1017-1033&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-014-1192-x&rft_dat=%3Cproquest_cross%3E2262590067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262590067&rft_id=info:pmid/&rfr_iscdi=true |