Positive definite separable quadratic programs for non-convex problems
We propose to enforce positive definiteness of the Hessian matrix in a sequence of separable quadratic programs, without demanding that the individual contributions from the objective and the constraint functions are all positive definite. For problems characterized by non-convex objective or constr...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2012-12, Vol.46 (6), p.795-802 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 6 |
container_start_page | 795 |
container_title | Structural and multidisciplinary optimization |
container_volume | 46 |
creator | Groenwold, Albert A. |
description | We propose to enforce positive definiteness of the Hessian matrix in a sequence of separable quadratic programs, without demanding that the individual contributions from the objective and the constraint functions are all positive definite. For problems characterized by non-convex objective or constraint functions, this may result in a notable computational advantage. Even though separable quadratic programs are of interest in their own right, they are of particular interest in structural optimization, due to the so-called ‘approximated-approximations’ approach. This approach allows for the construction of quadratic approximations to the reciprocal-like approximations used, for example, in CONLIN and MMA. To demonstrate some of the ideas proposed, the optimal topology design of a structure subject to
local
stress constraints is studied as one of the examples. |
doi_str_mv | 10.1007/s00158-012-0810-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262589918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262589918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-91a729caa33c79803ab09ba3a0a3a66c3a24b46bc796cc2c1c53aab577d851253</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMstnNHqVYFQp6UPAWZtNs2dJu2mRb9N-bZUVPHoYZZt57Ax9j1wi3CFDeRQBUmgMKDhqB6xM2wQIVx1zr09-5_DhnFzGuAUBDXk3Y_NXHtm-PLlu6pu3a3mXR7ShQvXHZ_kDLQH1rs13wq0DbmDU-ZJ3vuPXd0X0O-yTcxkt21tAmuqufPmXv84e32RNfvDw-z-4X3Eosel4hlaKyRFLastIgqYaqJkmQqiisJJHXeVGnY2GtsGiVJKpVWS61QqHklN2Muenx_uBib9b-ELr00ghRCKWrCnVS4aiywccYXGN2od1S-DIIZsBlRlwm4TIDLjN4xOiJSdutXPhL_t_0DblwbXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262589918</pqid></control><display><type>article</type><title>Positive definite separable quadratic programs for non-convex problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Groenwold, Albert A.</creator><creatorcontrib>Groenwold, Albert A.</creatorcontrib><description>We propose to enforce positive definiteness of the Hessian matrix in a sequence of separable quadratic programs, without demanding that the individual contributions from the objective and the constraint functions are all positive definite. For problems characterized by non-convex objective or constraint functions, this may result in a notable computational advantage. Even though separable quadratic programs are of interest in their own right, they are of particular interest in structural optimization, due to the so-called ‘approximated-approximations’ approach. This approach allows for the construction of quadratic approximations to the reciprocal-like approximations used, for example, in CONLIN and MMA. To demonstrate some of the ideas proposed, the optimal topology design of a structure subject to
local
stress constraints is studied as one of the examples.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-012-0810-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Computational Mathematics and Numerical Analysis ; Engineering ; Engineering Design ; Hessian matrices ; Optimization ; Research Paper ; Theoretical and Applied Mechanics ; Topology</subject><ispartof>Structural and multidisciplinary optimization, 2012-12, Vol.46 (6), p.795-802</ispartof><rights>Springer-Verlag 2012</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-91a729caa33c79803ab09ba3a0a3a66c3a24b46bc796cc2c1c53aab577d851253</citedby><cites>FETCH-LOGICAL-c316t-91a729caa33c79803ab09ba3a0a3a66c3a24b46bc796cc2c1c53aab577d851253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-012-0810-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-012-0810-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Groenwold, Albert A.</creatorcontrib><title>Positive definite separable quadratic programs for non-convex problems</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>We propose to enforce positive definiteness of the Hessian matrix in a sequence of separable quadratic programs, without demanding that the individual contributions from the objective and the constraint functions are all positive definite. For problems characterized by non-convex objective or constraint functions, this may result in a notable computational advantage. Even though separable quadratic programs are of interest in their own right, they are of particular interest in structural optimization, due to the so-called ‘approximated-approximations’ approach. This approach allows for the construction of quadratic approximations to the reciprocal-like approximations used, for example, in CONLIN and MMA. To demonstrate some of the ideas proposed, the optimal topology design of a structure subject to
local
stress constraints is studied as one of the examples.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Hessian matrices</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC5-hMstnNHqVYFQp6UPAWZtNs2dJu2mRb9N-bZUVPHoYZZt57Ax9j1wi3CFDeRQBUmgMKDhqB6xM2wQIVx1zr09-5_DhnFzGuAUBDXk3Y_NXHtm-PLlu6pu3a3mXR7ShQvXHZ_kDLQH1rs13wq0DbmDU-ZJ3vuPXd0X0O-yTcxkt21tAmuqufPmXv84e32RNfvDw-z-4X3Eosel4hlaKyRFLastIgqYaqJkmQqiisJJHXeVGnY2GtsGiVJKpVWS61QqHklN2Muenx_uBib9b-ELr00ghRCKWrCnVS4aiywccYXGN2od1S-DIIZsBlRlwm4TIDLjN4xOiJSdutXPhL_t_0DblwbXc</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Groenwold, Albert A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121201</creationdate><title>Positive definite separable quadratic programs for non-convex problems</title><author>Groenwold, Albert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-91a729caa33c79803ab09ba3a0a3a66c3a24b46bc796cc2c1c53aab577d851253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Hessian matrices</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groenwold, Albert A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groenwold, Albert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive definite separable quadratic programs for non-convex problems</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>46</volume><issue>6</issue><spage>795</spage><epage>802</epage><pages>795-802</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>We propose to enforce positive definiteness of the Hessian matrix in a sequence of separable quadratic programs, without demanding that the individual contributions from the objective and the constraint functions are all positive definite. For problems characterized by non-convex objective or constraint functions, this may result in a notable computational advantage. Even though separable quadratic programs are of interest in their own right, they are of particular interest in structural optimization, due to the so-called ‘approximated-approximations’ approach. This approach allows for the construction of quadratic approximations to the reciprocal-like approximations used, for example, in CONLIN and MMA. To demonstrate some of the ideas proposed, the optimal topology design of a structure subject to
local
stress constraints is studied as one of the examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00158-012-0810-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2012-12, Vol.46 (6), p.795-802 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262589918 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computational Mathematics and Numerical Analysis Engineering Engineering Design Hessian matrices Optimization Research Paper Theoretical and Applied Mechanics Topology |
title | Positive definite separable quadratic programs for non-convex problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20definite%20separable%20quadratic%20programs%20for%20non-convex%20problems&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Groenwold,%20Albert%20A.&rft.date=2012-12-01&rft.volume=46&rft.issue=6&rft.spage=795&rft.epage=802&rft.pages=795-802&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-012-0810-8&rft_dat=%3Cproquest_cross%3E2262589918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262589918&rft_id=info:pmid/&rfr_iscdi=true |