Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints
This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on t...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2013-06, Vol.47 (6), p.951-962 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 962 |
---|---|
container_issue | 6 |
container_start_page | 951 |
container_title | Structural and multidisciplinary optimization |
container_volume | 47 |
creator | Pugachev, Alexander O. |
description | This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on torsional and equivalent stresses, natural frequencies, and unbalance response amplitudes. The sizing optimization problem is solved using a gradient projection method and a sequential quadratic programming technique. A typical turbine rotor system is considered. An in-house beam-based finite element method code is used for the prediction of static and dynamic characteristics of the rotor system. Analytical sensitivity analysis is performed for the static and harmonic equations using the adjoint method. Sensitivity coefficients for the natural frequencies are obtained directly from the quadratic eigenvalue problem. Results of several optimization runs with different constraint sets show a significant shaft weight reduction in comparison with the baseline configuration with all constraints being satisfied. The two optimization methods are compared and discussed in regard to their performance. |
doi_str_mv | 10.1007/s00158-012-0867-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262587642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262587642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5416de2eb5f8254cdf8eab04f5c6ac7604aeeb7df358a31fcaef33a91ebb93213</originalsourceid><addsrcrecordid>eNp1kM1KxTAQhYso-PsA7gJurSZp2uYuRfwDwY2CuzBNJ97KbVIzucj1HXxnIxVduZkzMN-ZGU5RHAt-Jjhvz4lzUeuSC1ly3bSl2ir2RCPqUiitt3_79nm32Cd65ZxrrhZ7xefFNK0GC2kIngXHXiL0A_pUdkDYszClYRw-5vGIaRl6Yi5EBiyGlJU2lHBk70NaMkqZs1kiEp0yD2kdYcVcxLc1ers5Bd-zJcQx-IxlaAqekNlcU4TBJzosdhysCI9-9KB4ur56vLwt7x9u7i4v7ktbiSaVtRJNjxK72mlZK9s7jdBx5WrbgG0brgCxa3tX1Roq4SygqypYCOy6RSVFdVCczHunGPJvlMxrWEefTxopG1nrtlEyU2KmbAxEEZ2Z4jBC3BjBzXfqZk7d5NTNd-pGZY-cPZRZ_4Lxb_P_pi-bwYoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262587642</pqid></control><display><type>article</type><title>Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>Pugachev, Alexander O.</creator><creatorcontrib>Pugachev, Alexander O.</creatorcontrib><description>This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on torsional and equivalent stresses, natural frequencies, and unbalance response amplitudes. The sizing optimization problem is solved using a gradient projection method and a sequential quadratic programming technique. A typical turbine rotor system is considered. An in-house beam-based finite element method code is used for the prediction of static and dynamic characteristics of the rotor system. Analytical sensitivity analysis is performed for the static and harmonic equations using the adjoint method. Sensitivity coefficients for the natural frequencies are obtained directly from the quadratic eigenvalue problem. Results of several optimization runs with different constraint sets show a significant shaft weight reduction in comparison with the baseline configuration with all constraints being satisfied. The two optimization methods are compared and discussed in regard to their performance.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-012-0867-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Computational Mathematics and Numerical Analysis ; Constraints ; Design optimization ; Dynamic characteristics ; Eigenvalues ; Engineering ; Engineering Design ; Finite element method ; Forecasting ; Harmonic response ; Industrial Application ; Mathematical analysis ; Methods ; Nonlinear programming ; Nonlinear systems ; Quadratic programming ; Resonant frequencies ; Sensitivity analysis ; Theoretical and Applied Mechanics ; Turbines ; Unbalance ; Weight reduction</subject><ispartof>Structural and multidisciplinary optimization, 2013-06, Vol.47 (6), p.951-962</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5416de2eb5f8254cdf8eab04f5c6ac7604aeeb7df358a31fcaef33a91ebb93213</citedby><cites>FETCH-LOGICAL-c316t-5416de2eb5f8254cdf8eab04f5c6ac7604aeeb7df358a31fcaef33a91ebb93213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-012-0867-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-012-0867-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pugachev, Alexander O.</creatorcontrib><title>Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on torsional and equivalent stresses, natural frequencies, and unbalance response amplitudes. The sizing optimization problem is solved using a gradient projection method and a sequential quadratic programming technique. A typical turbine rotor system is considered. An in-house beam-based finite element method code is used for the prediction of static and dynamic characteristics of the rotor system. Analytical sensitivity analysis is performed for the static and harmonic equations using the adjoint method. Sensitivity coefficients for the natural frequencies are obtained directly from the quadratic eigenvalue problem. Results of several optimization runs with different constraint sets show a significant shaft weight reduction in comparison with the baseline configuration with all constraints being satisfied. The two optimization methods are compared and discussed in regard to their performance.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constraints</subject><subject>Design optimization</subject><subject>Dynamic characteristics</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Forecasting</subject><subject>Harmonic response</subject><subject>Industrial Application</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nonlinear programming</subject><subject>Nonlinear systems</subject><subject>Quadratic programming</subject><subject>Resonant frequencies</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Turbines</subject><subject>Unbalance</subject><subject>Weight reduction</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KxTAQhYso-PsA7gJurSZp2uYuRfwDwY2CuzBNJ97KbVIzucj1HXxnIxVduZkzMN-ZGU5RHAt-Jjhvz4lzUeuSC1ly3bSl2ir2RCPqUiitt3_79nm32Cd65ZxrrhZ7xefFNK0GC2kIngXHXiL0A_pUdkDYszClYRw-5vGIaRl6Yi5EBiyGlJU2lHBk70NaMkqZs1kiEp0yD2kdYcVcxLc1ers5Bd-zJcQx-IxlaAqekNlcU4TBJzosdhysCI9-9KB4ur56vLwt7x9u7i4v7ktbiSaVtRJNjxK72mlZK9s7jdBx5WrbgG0brgCxa3tX1Roq4SygqypYCOy6RSVFdVCczHunGPJvlMxrWEefTxopG1nrtlEyU2KmbAxEEZ2Z4jBC3BjBzXfqZk7d5NTNd-pGZY-cPZRZ_4Lxb_P_pi-bwYoQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Pugachev, Alexander O.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints</title><author>Pugachev, Alexander O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5416de2eb5f8254cdf8eab04f5c6ac7604aeeb7df358a31fcaef33a91ebb93213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constraints</topic><topic>Design optimization</topic><topic>Dynamic characteristics</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Forecasting</topic><topic>Harmonic response</topic><topic>Industrial Application</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nonlinear programming</topic><topic>Nonlinear systems</topic><topic>Quadratic programming</topic><topic>Resonant frequencies</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Turbines</topic><topic>Unbalance</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pugachev, Alexander O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pugachev, Alexander O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>47</volume><issue>6</issue><spage>951</spage><epage>962</epage><pages>951-962</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on torsional and equivalent stresses, natural frequencies, and unbalance response amplitudes. The sizing optimization problem is solved using a gradient projection method and a sequential quadratic programming technique. A typical turbine rotor system is considered. An in-house beam-based finite element method code is used for the prediction of static and dynamic characteristics of the rotor system. Analytical sensitivity analysis is performed for the static and harmonic equations using the adjoint method. Sensitivity coefficients for the natural frequencies are obtained directly from the quadratic eigenvalue problem. Results of several optimization runs with different constraint sets show a significant shaft weight reduction in comparison with the baseline configuration with all constraints being satisfied. The two optimization methods are compared and discussed in regard to their performance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00158-012-0867-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2013-06, Vol.47 (6), p.951-962 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262587642 |
source | Springer Nature - Complete Springer Journals |
subjects | Computational Mathematics and Numerical Analysis Constraints Design optimization Dynamic characteristics Eigenvalues Engineering Engineering Design Finite element method Forecasting Harmonic response Industrial Application Mathematical analysis Methods Nonlinear programming Nonlinear systems Quadratic programming Resonant frequencies Sensitivity analysis Theoretical and Applied Mechanics Turbines Unbalance Weight reduction |
title | Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20gradient-based%20optimization%20methods%20for%20a%20rotor%20system%20with%20static%20stress,%20natural%20frequency,and%20harmonic%20response%20constraints&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Pugachev,%20Alexander%20O.&rft.date=2013-06-01&rft.volume=47&rft.issue=6&rft.spage=951&rft.epage=962&rft.pages=951-962&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-012-0867-4&rft_dat=%3Cproquest_cross%3E2262587642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262587642&rft_id=info:pmid/&rfr_iscdi=true |