Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints

This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2013-06, Vol.47 (6), p.951-962
1. Verfasser: Pugachev, Alexander O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 962
container_issue 6
container_start_page 951
container_title Structural and multidisciplinary optimization
container_volume 47
creator Pugachev, Alexander O.
description This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on torsional and equivalent stresses, natural frequencies, and unbalance response amplitudes. The sizing optimization problem is solved using a gradient projection method and a sequential quadratic programming technique. A typical turbine rotor system is considered. An in-house beam-based finite element method code is used for the prediction of static and dynamic characteristics of the rotor system. Analytical sensitivity analysis is performed for the static and harmonic equations using the adjoint method. Sensitivity coefficients for the natural frequencies are obtained directly from the quadratic eigenvalue problem. Results of several optimization runs with different constraint sets show a significant shaft weight reduction in comparison with the baseline configuration with all constraints being satisfied. The two optimization methods are compared and discussed in regard to their performance.
doi_str_mv 10.1007/s00158-012-0867-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262587642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262587642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5416de2eb5f8254cdf8eab04f5c6ac7604aeeb7df358a31fcaef33a91ebb93213</originalsourceid><addsrcrecordid>eNp1kM1KxTAQhYso-PsA7gJurSZp2uYuRfwDwY2CuzBNJ97KbVIzucj1HXxnIxVduZkzMN-ZGU5RHAt-Jjhvz4lzUeuSC1ly3bSl2ir2RCPqUiitt3_79nm32Cd65ZxrrhZ7xefFNK0GC2kIngXHXiL0A_pUdkDYszClYRw-5vGIaRl6Yi5EBiyGlJU2lHBk70NaMkqZs1kiEp0yD2kdYcVcxLc1ers5Bd-zJcQx-IxlaAqekNlcU4TBJzosdhysCI9-9KB4ur56vLwt7x9u7i4v7ktbiSaVtRJNjxK72mlZK9s7jdBx5WrbgG0brgCxa3tX1Roq4SygqypYCOy6RSVFdVCczHunGPJvlMxrWEefTxopG1nrtlEyU2KmbAxEEZ2Z4jBC3BjBzXfqZk7d5NTNd-pGZY-cPZRZ_4Lxb_P_pi-bwYoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262587642</pqid></control><display><type>article</type><title>Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>Pugachev, Alexander O.</creator><creatorcontrib>Pugachev, Alexander O.</creatorcontrib><description>This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on torsional and equivalent stresses, natural frequencies, and unbalance response amplitudes. The sizing optimization problem is solved using a gradient projection method and a sequential quadratic programming technique. A typical turbine rotor system is considered. An in-house beam-based finite element method code is used for the prediction of static and dynamic characteristics of the rotor system. Analytical sensitivity analysis is performed for the static and harmonic equations using the adjoint method. Sensitivity coefficients for the natural frequencies are obtained directly from the quadratic eigenvalue problem. Results of several optimization runs with different constraint sets show a significant shaft weight reduction in comparison with the baseline configuration with all constraints being satisfied. The two optimization methods are compared and discussed in regard to their performance.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-012-0867-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Computational Mathematics and Numerical Analysis ; Constraints ; Design optimization ; Dynamic characteristics ; Eigenvalues ; Engineering ; Engineering Design ; Finite element method ; Forecasting ; Harmonic response ; Industrial Application ; Mathematical analysis ; Methods ; Nonlinear programming ; Nonlinear systems ; Quadratic programming ; Resonant frequencies ; Sensitivity analysis ; Theoretical and Applied Mechanics ; Turbines ; Unbalance ; Weight reduction</subject><ispartof>Structural and multidisciplinary optimization, 2013-06, Vol.47 (6), p.951-962</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5416de2eb5f8254cdf8eab04f5c6ac7604aeeb7df358a31fcaef33a91ebb93213</citedby><cites>FETCH-LOGICAL-c316t-5416de2eb5f8254cdf8eab04f5c6ac7604aeeb7df358a31fcaef33a91ebb93213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-012-0867-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-012-0867-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pugachev, Alexander O.</creatorcontrib><title>Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on torsional and equivalent stresses, natural frequencies, and unbalance response amplitudes. The sizing optimization problem is solved using a gradient projection method and a sequential quadratic programming technique. A typical turbine rotor system is considered. An in-house beam-based finite element method code is used for the prediction of static and dynamic characteristics of the rotor system. Analytical sensitivity analysis is performed for the static and harmonic equations using the adjoint method. Sensitivity coefficients for the natural frequencies are obtained directly from the quadratic eigenvalue problem. Results of several optimization runs with different constraint sets show a significant shaft weight reduction in comparison with the baseline configuration with all constraints being satisfied. The two optimization methods are compared and discussed in regard to their performance.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constraints</subject><subject>Design optimization</subject><subject>Dynamic characteristics</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Forecasting</subject><subject>Harmonic response</subject><subject>Industrial Application</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nonlinear programming</subject><subject>Nonlinear systems</subject><subject>Quadratic programming</subject><subject>Resonant frequencies</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Turbines</subject><subject>Unbalance</subject><subject>Weight reduction</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KxTAQhYso-PsA7gJurSZp2uYuRfwDwY2CuzBNJ97KbVIzucj1HXxnIxVduZkzMN-ZGU5RHAt-Jjhvz4lzUeuSC1ly3bSl2ir2RCPqUiitt3_79nm32Cd65ZxrrhZ7xefFNK0GC2kIngXHXiL0A_pUdkDYszClYRw-5vGIaRl6Yi5EBiyGlJU2lHBk70NaMkqZs1kiEp0yD2kdYcVcxLc1ers5Bd-zJcQx-IxlaAqekNlcU4TBJzosdhysCI9-9KB4ur56vLwt7x9u7i4v7ktbiSaVtRJNjxK72mlZK9s7jdBx5WrbgG0brgCxa3tX1Roq4SygqypYCOy6RSVFdVCczHunGPJvlMxrWEefTxopG1nrtlEyU2KmbAxEEZ2Z4jBC3BjBzXfqZk7d5NTNd-pGZY-cPZRZ_4Lxb_P_pi-bwYoQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Pugachev, Alexander O.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130601</creationdate><title>Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints</title><author>Pugachev, Alexander O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5416de2eb5f8254cdf8eab04f5c6ac7604aeeb7df358a31fcaef33a91ebb93213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constraints</topic><topic>Design optimization</topic><topic>Dynamic characteristics</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Forecasting</topic><topic>Harmonic response</topic><topic>Industrial Application</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nonlinear programming</topic><topic>Nonlinear systems</topic><topic>Quadratic programming</topic><topic>Resonant frequencies</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Turbines</topic><topic>Unbalance</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pugachev, Alexander O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pugachev, Alexander O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>47</volume><issue>6</issue><spage>951</spage><epage>962</epage><pages>951-962</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper demonstrates the application of gradient-based optimization methods to the minimal weight design optimization of rotor systems. A nonlinear constrained optimization problem is considered. Design variables are inner radii and wall thicknesses of shaft sections. Constraints are imposed on torsional and equivalent stresses, natural frequencies, and unbalance response amplitudes. The sizing optimization problem is solved using a gradient projection method and a sequential quadratic programming technique. A typical turbine rotor system is considered. An in-house beam-based finite element method code is used for the prediction of static and dynamic characteristics of the rotor system. Analytical sensitivity analysis is performed for the static and harmonic equations using the adjoint method. Sensitivity coefficients for the natural frequencies are obtained directly from the quadratic eigenvalue problem. Results of several optimization runs with different constraint sets show a significant shaft weight reduction in comparison with the baseline configuration with all constraints being satisfied. The two optimization methods are compared and discussed in regard to their performance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00158-012-0867-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2013-06, Vol.47 (6), p.951-962
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262587642
source Springer Nature - Complete Springer Journals
subjects Computational Mathematics and Numerical Analysis
Constraints
Design optimization
Dynamic characteristics
Eigenvalues
Engineering
Engineering Design
Finite element method
Forecasting
Harmonic response
Industrial Application
Mathematical analysis
Methods
Nonlinear programming
Nonlinear systems
Quadratic programming
Resonant frequencies
Sensitivity analysis
Theoretical and Applied Mechanics
Turbines
Unbalance
Weight reduction
title Application of gradient-based optimization methods for a rotor system with static stress, natural frequency,and harmonic response constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20gradient-based%20optimization%20methods%20for%20a%20rotor%20system%20with%20static%20stress,%20natural%20frequency,and%20harmonic%20response%20constraints&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Pugachev,%20Alexander%20O.&rft.date=2013-06-01&rft.volume=47&rft.issue=6&rft.spage=951&rft.epage=962&rft.pages=951-962&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-012-0867-4&rft_dat=%3Cproquest_cross%3E2262587642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262587642&rft_id=info:pmid/&rfr_iscdi=true