A generalized “max-min” sample for surrogate update

This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2014-04, Vol.49 (4), p.683-687
Hauptverfasser: Lacaze, Sylvain, Missoum, Samy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue 4
container_start_page 683
container_title Structural and multidisciplinary optimization
container_volume 49
creator Lacaze, Sylvain
Missoum, Samy
description This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerical improvement of the max-min optimization problem through the use of the Chebychev norm.
doi_str_mv 10.1007/s00158-013-1011-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262587264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262587264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-606f4b3eaa15c6477d61daf680b082becdc1cf9e61630dec6a8f505a28f8d5f43</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G7AdfTezCSTWZaiVii4UXAX0vyUKfNn0gF11QfRl-uTOGVEV67OXZzvXPgIuUS4RoD8JgIglxQwpQiItDgiExTIKWZSHv_e-cspOYtxAwASsmJC8lmydo0Luio_nE32u89av9G6bPa7ryTquqtc4tuQxD6Edq23Luk7O8Q5OfG6iu7iJ6fk-e72ab6gy8f7h_lsSU2KYksFCJ-tUqc1ciOyPLcCrfZCwgokWzljDRpfOIEiBeuM0NJz4JpJLy33WTolV-NuF9rX3sWt2rR9aIaXijHBuMyZOLRwbJnQxhicV10oax3eFYI6-FGjHzX4UQc_qhgYNjJx6DZrF_6W_4e-AZh6aWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262587264</pqid></control><display><type>article</type><title>A generalized “max-min” sample for surrogate update</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lacaze, Sylvain ; Missoum, Samy</creator><creatorcontrib>Lacaze, Sylvain ; Missoum, Samy</creatorcontrib><description>This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerical improvement of the max-min optimization problem through the use of the Chebychev norm.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-013-1011-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brief Note ; Computational Mathematics and Numerical Analysis ; Domains ; Engineering ; Engineering Design ; Optimization ; Random variables ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2014-04, Vol.49 (4), p.683-687</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-606f4b3eaa15c6477d61daf680b082becdc1cf9e61630dec6a8f505a28f8d5f43</citedby><cites>FETCH-LOGICAL-c316t-606f4b3eaa15c6477d61daf680b082becdc1cf9e61630dec6a8f505a28f8d5f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-013-1011-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-013-1011-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Lacaze, Sylvain</creatorcontrib><creatorcontrib>Missoum, Samy</creatorcontrib><title>A generalized “max-min” sample for surrogate update</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerical improvement of the max-min optimization problem through the use of the Chebychev norm.</description><subject>Brief Note</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Domains</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4G7AdfTezCSTWZaiVii4UXAX0vyUKfNn0gF11QfRl-uTOGVEV67OXZzvXPgIuUS4RoD8JgIglxQwpQiItDgiExTIKWZSHv_e-cspOYtxAwASsmJC8lmydo0Luio_nE32u89av9G6bPa7ryTquqtc4tuQxD6Edq23Luk7O8Q5OfG6iu7iJ6fk-e72ab6gy8f7h_lsSU2KYksFCJ-tUqc1ciOyPLcCrfZCwgokWzljDRpfOIEiBeuM0NJz4JpJLy33WTolV-NuF9rX3sWt2rR9aIaXijHBuMyZOLRwbJnQxhicV10oax3eFYI6-FGjHzX4UQc_qhgYNjJx6DZrF_6W_4e-AZh6aWA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Lacaze, Sylvain</creator><creator>Missoum, Samy</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140401</creationdate><title>A generalized “max-min” sample for surrogate update</title><author>Lacaze, Sylvain ; Missoum, Samy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-606f4b3eaa15c6477d61daf680b082becdc1cf9e61630dec6a8f505a28f8d5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Brief Note</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Domains</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacaze, Sylvain</creatorcontrib><creatorcontrib>Missoum, Samy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacaze, Sylvain</au><au>Missoum, Samy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized “max-min” sample for surrogate update</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>49</volume><issue>4</issue><spage>683</spage><epage>687</epage><pages>683-687</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerical improvement of the max-min optimization problem through the use of the Chebychev norm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-013-1011-9</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2014-04, Vol.49 (4), p.683-687
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262587264
source SpringerLink Journals - AutoHoldings
subjects Brief Note
Computational Mathematics and Numerical Analysis
Domains
Engineering
Engineering Design
Optimization
Random variables
Theoretical and Applied Mechanics
title A generalized “max-min” sample for surrogate update
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20%E2%80%9Cmax-min%E2%80%9D%20sample%20for%20surrogate%20update&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Lacaze,%20Sylvain&rft.date=2014-04-01&rft.volume=49&rft.issue=4&rft.spage=683&rft.epage=687&rft.pages=683-687&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-013-1011-9&rft_dat=%3Cproquest_cross%3E2262587264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262587264&rft_id=info:pmid/&rfr_iscdi=true