A generalized “max-min” sample for surrogate update
This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerica...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2014-04, Vol.49 (4), p.683-687 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 687 |
---|---|
container_issue | 4 |
container_start_page | 683 |
container_title | Structural and multidisciplinary optimization |
container_volume | 49 |
creator | Lacaze, Sylvain Missoum, Samy |
description | This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerical improvement of the max-min optimization problem through the use of the Chebychev norm. |
doi_str_mv | 10.1007/s00158-013-1011-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262587264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262587264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-606f4b3eaa15c6477d61daf680b082becdc1cf9e61630dec6a8f505a28f8d5f43</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G7AdfTezCSTWZaiVii4UXAX0vyUKfNn0gF11QfRl-uTOGVEV67OXZzvXPgIuUS4RoD8JgIglxQwpQiItDgiExTIKWZSHv_e-cspOYtxAwASsmJC8lmydo0Luio_nE32u89av9G6bPa7ryTquqtc4tuQxD6Edq23Luk7O8Q5OfG6iu7iJ6fk-e72ab6gy8f7h_lsSU2KYksFCJ-tUqc1ciOyPLcCrfZCwgokWzljDRpfOIEiBeuM0NJz4JpJLy33WTolV-NuF9rX3sWt2rR9aIaXijHBuMyZOLRwbJnQxhicV10oax3eFYI6-FGjHzX4UQc_qhgYNjJx6DZrF_6W_4e-AZh6aWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262587264</pqid></control><display><type>article</type><title>A generalized “max-min” sample for surrogate update</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lacaze, Sylvain ; Missoum, Samy</creator><creatorcontrib>Lacaze, Sylvain ; Missoum, Samy</creatorcontrib><description>This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerical improvement of the max-min optimization problem through the use of the Chebychev norm.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-013-1011-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brief Note ; Computational Mathematics and Numerical Analysis ; Domains ; Engineering ; Engineering Design ; Optimization ; Random variables ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2014-04, Vol.49 (4), p.683-687</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-606f4b3eaa15c6477d61daf680b082becdc1cf9e61630dec6a8f505a28f8d5f43</citedby><cites>FETCH-LOGICAL-c316t-606f4b3eaa15c6477d61daf680b082becdc1cf9e61630dec6a8f505a28f8d5f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-013-1011-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-013-1011-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Lacaze, Sylvain</creatorcontrib><creatorcontrib>Missoum, Samy</creatorcontrib><title>A generalized “max-min” sample for surrogate update</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerical improvement of the max-min optimization problem through the use of the Chebychev norm.</description><subject>Brief Note</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Domains</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4G7AdfTezCSTWZaiVii4UXAX0vyUKfNn0gF11QfRl-uTOGVEV67OXZzvXPgIuUS4RoD8JgIglxQwpQiItDgiExTIKWZSHv_e-cspOYtxAwASsmJC8lmydo0Luio_nE32u89av9G6bPa7ryTquqtc4tuQxD6Edq23Luk7O8Q5OfG6iu7iJ6fk-e72ab6gy8f7h_lsSU2KYksFCJ-tUqc1ciOyPLcCrfZCwgokWzljDRpfOIEiBeuM0NJz4JpJLy33WTolV-NuF9rX3sWt2rR9aIaXijHBuMyZOLRwbJnQxhicV10oax3eFYI6-FGjHzX4UQc_qhgYNjJx6DZrF_6W_4e-AZh6aWA</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Lacaze, Sylvain</creator><creator>Missoum, Samy</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140401</creationdate><title>A generalized “max-min” sample for surrogate update</title><author>Lacaze, Sylvain ; Missoum, Samy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-606f4b3eaa15c6477d61daf680b082becdc1cf9e61630dec6a8f505a28f8d5f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Brief Note</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Domains</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacaze, Sylvain</creatorcontrib><creatorcontrib>Missoum, Samy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacaze, Sylvain</au><au>Missoum, Samy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized “max-min” sample for surrogate update</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>49</volume><issue>4</issue><spage>683</spage><epage>687</epage><pages>683-687</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This brief note describes the generalization of the “max-min” sample that was originally used in the update of approximated feasible or failure domains. The generalization stems from the use of the random variables joint distribution in the sampling scheme. In addition, this note proposes a numerical improvement of the max-min optimization problem through the use of the Chebychev norm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-013-1011-9</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2014-04, Vol.49 (4), p.683-687 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262587264 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brief Note Computational Mathematics and Numerical Analysis Domains Engineering Engineering Design Optimization Random variables Theoretical and Applied Mechanics |
title | A generalized “max-min” sample for surrogate update |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20%E2%80%9Cmax-min%E2%80%9D%20sample%20for%20surrogate%20update&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Lacaze,%20Sylvain&rft.date=2014-04-01&rft.volume=49&rft.issue=4&rft.spage=683&rft.epage=687&rft.pages=683-687&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-013-1011-9&rft_dat=%3Cproquest_cross%3E2262587264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262587264&rft_id=info:pmid/&rfr_iscdi=true |