Stiffening of restrained thermal structures via topology optimization
The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2013-10, Vol.48 (4), p.731-745 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 745 |
---|---|
container_issue | 4 |
container_start_page | 731 |
container_title | Structural and multidisciplinary optimization |
container_volume | 48 |
creator | Deaton, Joshua D. Grandhi, Ramana V. |
description | The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where this prescription is not possible. Thus it becomes necessary to utilize new design techniques to solve the problem of stiffening and stress reduction in thermal structures with restrained thermal expansion. In this work, a design scenario is presented to demonstrate the challenges associated with the design of thin shell structures in a thermal environment and the breakdown of common design methodologies. These challenges include a fundamental non-intuitiveness in the design space and the design dependency that occurs with thermal loading. Three different topology optimization formulations are investigated to solve this problem. The effectiveness of each of these methods is benchmarked against one another and general recommendations are made regarding effective design solutions for restrained thermal structures. |
doi_str_mv | 10.1007/s00158-013-0934-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262584855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262584855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-92134cda9680e350346ef630c5e13c79bda0e666537bf212b101d2901ab7fdb83</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9WZpEnToyzrH1jwoIK3kLbJmmW3qUkqrJ_eLhU9eZph5r03w4-QS4RrBChvIgBymQOyHCpW5PyIzFAgz7GQ8vi3L99OyVmMGwCQUFQzsnxOzlrTuW6deZsFE1PQrjNtlt5N2OltNg6GJg3jJvt0Oku-91u_3me-T27nvnRyvjsnJ1Zvo7n4qXPyerd8WTzkq6f7x8XtKm-YpCmvKLKiaXUlJBjGgRXCWMGg4QZZU1Z1q8EIITgra0uR1gjY0gpQ16Vta8nm5GrK7YP_GMZf1cYPoRtPKkoF5bKQnI8qnFRN8DEGY1Uf3E6HvUJQB1pqoqVGWupASx08dPLEUdutTfhL_t_0DVHLbR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262584855</pqid></control><display><type>article</type><title>Stiffening of restrained thermal structures via topology optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deaton, Joshua D. ; Grandhi, Ramana V.</creator><creatorcontrib>Deaton, Joshua D. ; Grandhi, Ramana V.</creatorcontrib><description>The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where this prescription is not possible. Thus it becomes necessary to utilize new design techniques to solve the problem of stiffening and stress reduction in thermal structures with restrained thermal expansion. In this work, a design scenario is presented to demonstrate the challenges associated with the design of thin shell structures in a thermal environment and the breakdown of common design methodologies. These challenges include a fundamental non-intuitiveness in the design space and the design dependency that occurs with thermal loading. Three different topology optimization formulations are investigated to solve this problem. The effectiveness of each of these methods is benchmarked against one another and general recommendations are made regarding effective design solutions for restrained thermal structures.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-013-0934-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aircraft design ; Computational Mathematics and Numerical Analysis ; Dependence ; Engineering ; Engineering Design ; Formulations ; Research Paper ; Stiffening ; Theoretical and Applied Mechanics ; Thermal environments ; Thermal expansion ; Thermal stress ; Thin walled shells ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2013-10, Vol.48 (4), p.731-745</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-92134cda9680e350346ef630c5e13c79bda0e666537bf212b101d2901ab7fdb83</citedby><cites>FETCH-LOGICAL-c382t-92134cda9680e350346ef630c5e13c79bda0e666537bf212b101d2901ab7fdb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-013-0934-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-013-0934-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Deaton, Joshua D.</creatorcontrib><creatorcontrib>Grandhi, Ramana V.</creatorcontrib><title>Stiffening of restrained thermal structures via topology optimization</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where this prescription is not possible. Thus it becomes necessary to utilize new design techniques to solve the problem of stiffening and stress reduction in thermal structures with restrained thermal expansion. In this work, a design scenario is presented to demonstrate the challenges associated with the design of thin shell structures in a thermal environment and the breakdown of common design methodologies. These challenges include a fundamental non-intuitiveness in the design space and the design dependency that occurs with thermal loading. Three different topology optimization formulations are investigated to solve this problem. The effectiveness of each of these methods is benchmarked against one another and general recommendations are made regarding effective design solutions for restrained thermal structures.</description><subject>Aircraft design</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dependence</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Formulations</subject><subject>Research Paper</subject><subject>Stiffening</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal environments</subject><subject>Thermal expansion</subject><subject>Thermal stress</subject><subject>Thin walled shells</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9WZpEnToyzrH1jwoIK3kLbJmmW3qUkqrJ_eLhU9eZph5r03w4-QS4RrBChvIgBymQOyHCpW5PyIzFAgz7GQ8vi3L99OyVmMGwCQUFQzsnxOzlrTuW6deZsFE1PQrjNtlt5N2OltNg6GJg3jJvt0Oku-91u_3me-T27nvnRyvjsnJ1Zvo7n4qXPyerd8WTzkq6f7x8XtKm-YpCmvKLKiaXUlJBjGgRXCWMGg4QZZU1Z1q8EIITgra0uR1gjY0gpQ16Vta8nm5GrK7YP_GMZf1cYPoRtPKkoF5bKQnI8qnFRN8DEGY1Uf3E6HvUJQB1pqoqVGWupASx08dPLEUdutTfhL_t_0DVHLbR0</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Deaton, Joshua D.</creator><creator>Grandhi, Ramana V.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131001</creationdate><title>Stiffening of restrained thermal structures via topology optimization</title><author>Deaton, Joshua D. ; Grandhi, Ramana V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-92134cda9680e350346ef630c5e13c79bda0e666537bf212b101d2901ab7fdb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aircraft design</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dependence</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Formulations</topic><topic>Research Paper</topic><topic>Stiffening</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal environments</topic><topic>Thermal expansion</topic><topic>Thermal stress</topic><topic>Thin walled shells</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deaton, Joshua D.</creatorcontrib><creatorcontrib>Grandhi, Ramana V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deaton, Joshua D.</au><au>Grandhi, Ramana V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiffening of restrained thermal structures via topology optimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>48</volume><issue>4</issue><spage>731</spage><epage>745</epage><pages>731-745</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where this prescription is not possible. Thus it becomes necessary to utilize new design techniques to solve the problem of stiffening and stress reduction in thermal structures with restrained thermal expansion. In this work, a design scenario is presented to demonstrate the challenges associated with the design of thin shell structures in a thermal environment and the breakdown of common design methodologies. These challenges include a fundamental non-intuitiveness in the design space and the design dependency that occurs with thermal loading. Three different topology optimization formulations are investigated to solve this problem. The effectiveness of each of these methods is benchmarked against one another and general recommendations are made regarding effective design solutions for restrained thermal structures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-013-0934-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2013-10, Vol.48 (4), p.731-745 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2262584855 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aircraft design Computational Mathematics and Numerical Analysis Dependence Engineering Engineering Design Formulations Research Paper Stiffening Theoretical and Applied Mechanics Thermal environments Thermal expansion Thermal stress Thin walled shells Topology optimization |
title | Stiffening of restrained thermal structures via topology optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiffening%20of%20restrained%20thermal%20structures%20via%20topology%20optimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Deaton,%20Joshua%20D.&rft.date=2013-10-01&rft.volume=48&rft.issue=4&rft.spage=731&rft.epage=745&rft.pages=731-745&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-013-0934-5&rft_dat=%3Cproquest_cross%3E2262584855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262584855&rft_id=info:pmid/&rfr_iscdi=true |