Stiffening of restrained thermal structures via topology optimization

The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2013-10, Vol.48 (4), p.731-745
Hauptverfasser: Deaton, Joshua D., Grandhi, Ramana V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 745
container_issue 4
container_start_page 731
container_title Structural and multidisciplinary optimization
container_volume 48
creator Deaton, Joshua D.
Grandhi, Ramana V.
description The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where this prescription is not possible. Thus it becomes necessary to utilize new design techniques to solve the problem of stiffening and stress reduction in thermal structures with restrained thermal expansion. In this work, a design scenario is presented to demonstrate the challenges associated with the design of thin shell structures in a thermal environment and the breakdown of common design methodologies. These challenges include a fundamental non-intuitiveness in the design space and the design dependency that occurs with thermal loading. Three different topology optimization formulations are investigated to solve this problem. The effectiveness of each of these methods is benchmarked against one another and general recommendations are made regarding effective design solutions for restrained thermal structures.
doi_str_mv 10.1007/s00158-013-0934-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2262584855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262584855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-92134cda9680e350346ef630c5e13c79bda0e666537bf212b101d2901ab7fdb83</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9WZpEnToyzrH1jwoIK3kLbJmmW3qUkqrJ_eLhU9eZph5r03w4-QS4RrBChvIgBymQOyHCpW5PyIzFAgz7GQ8vi3L99OyVmMGwCQUFQzsnxOzlrTuW6deZsFE1PQrjNtlt5N2OltNg6GJg3jJvt0Oku-91u_3me-T27nvnRyvjsnJ1Zvo7n4qXPyerd8WTzkq6f7x8XtKm-YpCmvKLKiaXUlJBjGgRXCWMGg4QZZU1Z1q8EIITgra0uR1gjY0gpQ16Vta8nm5GrK7YP_GMZf1cYPoRtPKkoF5bKQnI8qnFRN8DEGY1Uf3E6HvUJQB1pqoqVGWupASx08dPLEUdutTfhL_t_0DVHLbR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262584855</pqid></control><display><type>article</type><title>Stiffening of restrained thermal structures via topology optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deaton, Joshua D. ; Grandhi, Ramana V.</creator><creatorcontrib>Deaton, Joshua D. ; Grandhi, Ramana V.</creatorcontrib><description>The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where this prescription is not possible. Thus it becomes necessary to utilize new design techniques to solve the problem of stiffening and stress reduction in thermal structures with restrained thermal expansion. In this work, a design scenario is presented to demonstrate the challenges associated with the design of thin shell structures in a thermal environment and the breakdown of common design methodologies. These challenges include a fundamental non-intuitiveness in the design space and the design dependency that occurs with thermal loading. Three different topology optimization formulations are investigated to solve this problem. The effectiveness of each of these methods is benchmarked against one another and general recommendations are made regarding effective design solutions for restrained thermal structures.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-013-0934-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aircraft design ; Computational Mathematics and Numerical Analysis ; Dependence ; Engineering ; Engineering Design ; Formulations ; Research Paper ; Stiffening ; Theoretical and Applied Mechanics ; Thermal environments ; Thermal expansion ; Thermal stress ; Thin walled shells ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2013-10, Vol.48 (4), p.731-745</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Structural and Multidisciplinary Optimization is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-92134cda9680e350346ef630c5e13c79bda0e666537bf212b101d2901ab7fdb83</citedby><cites>FETCH-LOGICAL-c382t-92134cda9680e350346ef630c5e13c79bda0e666537bf212b101d2901ab7fdb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-013-0934-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-013-0934-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Deaton, Joshua D.</creatorcontrib><creatorcontrib>Grandhi, Ramana V.</creatorcontrib><title>Stiffening of restrained thermal structures via topology optimization</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where this prescription is not possible. Thus it becomes necessary to utilize new design techniques to solve the problem of stiffening and stress reduction in thermal structures with restrained thermal expansion. In this work, a design scenario is presented to demonstrate the challenges associated with the design of thin shell structures in a thermal environment and the breakdown of common design methodologies. These challenges include a fundamental non-intuitiveness in the design space and the design dependency that occurs with thermal loading. Three different topology optimization formulations are investigated to solve this problem. The effectiveness of each of these methods is benchmarked against one another and general recommendations are made regarding effective design solutions for restrained thermal structures.</description><subject>Aircraft design</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dependence</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Formulations</subject><subject>Research Paper</subject><subject>Stiffening</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal environments</subject><subject>Thermal expansion</subject><subject>Thermal stress</subject><subject>Thin walled shells</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9WZpEnToyzrH1jwoIK3kLbJmmW3qUkqrJ_eLhU9eZph5r03w4-QS4RrBChvIgBymQOyHCpW5PyIzFAgz7GQ8vi3L99OyVmMGwCQUFQzsnxOzlrTuW6deZsFE1PQrjNtlt5N2OltNg6GJg3jJvt0Oku-91u_3me-T27nvnRyvjsnJ1Zvo7n4qXPyerd8WTzkq6f7x8XtKm-YpCmvKLKiaXUlJBjGgRXCWMGg4QZZU1Z1q8EIITgra0uR1gjY0gpQ16Vta8nm5GrK7YP_GMZf1cYPoRtPKkoF5bKQnI8qnFRN8DEGY1Uf3E6HvUJQB1pqoqVGWupASx08dPLEUdutTfhL_t_0DVHLbR0</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Deaton, Joshua D.</creator><creator>Grandhi, Ramana V.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131001</creationdate><title>Stiffening of restrained thermal structures via topology optimization</title><author>Deaton, Joshua D. ; Grandhi, Ramana V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-92134cda9680e350346ef630c5e13c79bda0e666537bf212b101d2901ab7fdb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aircraft design</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dependence</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Formulations</topic><topic>Research Paper</topic><topic>Stiffening</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal environments</topic><topic>Thermal expansion</topic><topic>Thermal stress</topic><topic>Thin walled shells</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deaton, Joshua D.</creatorcontrib><creatorcontrib>Grandhi, Ramana V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deaton, Joshua D.</au><au>Grandhi, Ramana V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiffening of restrained thermal structures via topology optimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>48</volume><issue>4</issue><spage>731</spage><epage>745</epage><pages>731-745</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The majority of work in the thermal structures field has focused on reducing or eliminating thermal stresses by accommodating thermal expansion. In the modern day, several new applications, including engine exhaust-washed structures for embedded engine aircraft, are posing new design scenarios where this prescription is not possible. Thus it becomes necessary to utilize new design techniques to solve the problem of stiffening and stress reduction in thermal structures with restrained thermal expansion. In this work, a design scenario is presented to demonstrate the challenges associated with the design of thin shell structures in a thermal environment and the breakdown of common design methodologies. These challenges include a fundamental non-intuitiveness in the design space and the design dependency that occurs with thermal loading. Three different topology optimization formulations are investigated to solve this problem. The effectiveness of each of these methods is benchmarked against one another and general recommendations are made regarding effective design solutions for restrained thermal structures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-013-0934-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2013-10, Vol.48 (4), p.731-745
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2262584855
source SpringerLink Journals - AutoHoldings
subjects Aircraft design
Computational Mathematics and Numerical Analysis
Dependence
Engineering
Engineering Design
Formulations
Research Paper
Stiffening
Theoretical and Applied Mechanics
Thermal environments
Thermal expansion
Thermal stress
Thin walled shells
Topology optimization
title Stiffening of restrained thermal structures via topology optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiffening%20of%20restrained%20thermal%20structures%20via%20topology%20optimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Deaton,%20Joshua%20D.&rft.date=2013-10-01&rft.volume=48&rft.issue=4&rft.spage=731&rft.epage=745&rft.pages=731-745&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-013-0934-5&rft_dat=%3Cproquest_cross%3E2262584855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262584855&rft_id=info:pmid/&rfr_iscdi=true